Sensing polarized light via switchable Rashba-Dresselhaus spin splitting in a ferroelectric semiconductor

被引:8
|
作者
Jing, Chang-Qing [1 ,2 ]
Chai, Chao-Yang [1 ,2 ]
Han, Xiang-Bin [1 ,2 ]
Liu, Cheng-Dong [1 ,2 ]
Wang, Wei [1 ,2 ]
Ju, Tong-Yu [1 ,2 ]
Zhang, Jing-Meng [1 ,2 ]
Jin, Ming-Liang [1 ,2 ]
Ye, Qiong [1 ,2 ]
Zhang, Wen [1 ,2 ]
机构
[1] Southeast Univ, Jiangsu Key Lab Sci & Applicat Mol Ferroelect, Nanjing 211189, Peoples R China
[2] Southeast Univ, Sch Chem & Chem Engn, Nanjing 211189, Peoples R China
基金
中国国家自然科学基金;
关键词
circular photogalvanic effect; circularly polarized light detection; electrical switching; ferroelectric perovskite; MAP 3: Understanding; Rashba-Dresselhaus splitting;
D O I
10.1016/j.matt.2023.12.011
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Sensing the spin states of circularly polarized light (CPL) is a prerequisite for varied advanced applications. Here, we show that a Rashba-Dresselhaus (RD) spin -splitting mechanism is responsible for detecting CPL in noncentrosymmetric semiconductors. In ferroelectric (2FPMA)2PbBr4 (2FPMA = 2-fluorobenzylammonium), the polar structure and strong spin -orbit coupling trigger a large RD spin splitting that differentiates CPL -excited carriers in the momentum space via optical transition selection rules. A single -crystal -based device shows a comparable detection performance to sense CPL spin states with an asymmetric factor of 0.37. Furthermore, the electrical reversal of the ferroelectric polarization leads to switchable bulk photovoltaic effect and spin texture, enabling self -powered and tunable photodetection. This indicates the validity of the RD spin -splitting mechanism in directly sensing CPL spin states without the need for chirality, thereby expanding the research scope of electrically switchable spin -responsive materials.
引用
收藏
页码:991 / 1001
页数:12
相关论文
共 50 条
  • [1] Rashba-Dresselhaus spin-splitting in the bulk ferroelectric oxide BiAlO3
    da Silveira, Luiz Gustavo Davanse
    Barone, Paolo
    Picozzi, Silvia
    PHYSICAL REVIEW B, 2016, 93 (24)
  • [2] Ferroelectric gate control of Rashba-Dresselhaus spin-orbit coupling in ferromagnetic semiconductor (Zn, Co)O
    Fu, Maoxiang
    Liu, Jiahui
    Cao, Qiang
    Zhang, Zhen
    Liu, Guolei
    Kang, Shishou
    Chen, Yanxue
    Yan, Shishen
    Mei, Liangmo
    Sun, Zhen-Dong
    APPLIED PHYSICS LETTERS, 2021, 119 (01)
  • [3] Switchable Enhanced Spin Photocurrent in Rashba and Cubic Dresselhaus Ferroelectric Semiconductors
    Fei, Ruixiang
    Yu, Shuaiqin
    Lu, Yan
    Zhu, Linghan
    Yang, Li
    NANO LETTERS, 2021, 21 (05) : 2265 - 2271
  • [4] Persistent spin helix in Rashba-Dresselhaus ferroelectric CsBiNb2O7
    Autieri, Carmine
    Barone, Paolo
    Slawinska, Jagoda
    Picozzi, Silvia
    PHYSICAL REVIEW MATERIALS, 2019, 3 (08)
  • [5] Hexagonal MnTe with Antiferromagnetic Spin Splitting and Hidden Rashba-Dresselhaus Interaction for Antiferromagnetic Spintronics
    Rooj, Suman
    Chakraborty, Jayita
    Ganguli, Nirmal
    ADVANCED PHYSICS RESEARCH, 2024, 3 (01):
  • [6] Two-Dimensional Chiral Covalent Organic Frameworks with Significant Rashba-Dresselhaus Spin Splitting
    Liu, Shanshan
    Li, Xingxing
    Li, Qunxiang
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2024, 15 (34): : 8790 - 8796
  • [7] Condensation of bosons with Rashba-Dresselhaus spin-orbit coupling
    Baym, Gordon
    Ozawa, Tomoki
    17TH INTERNATIONAL CONFERENCE ON RECENT PROGRESS IN MANY-BODY THEORIES (MBT17), 2014, 529
  • [8] Nonuniform Rashba-Dresselhaus spin precession along arbitrary paths
    Liu, Ming-Hao
    Chang, Ching-Ray
    PHYSICAL REVIEW B, 2006, 74 (19)
  • [9] Tuning Rashba-Dresselhaus effect with ferroelectric polarization at asymmetric heterostructural interface
    Zhang, Bangmin
    Tang, Chunhua
    Yang, Ping
    Chen, Jingsheng
    MATERIALS HORIZONS, 2024, 11 (01) : 262 - 270
  • [10] Generalized Rashba-Dresselhaus spin-orbit coupling for cold atoms
    Juzeliunas, Gediminas
    Ruseckas, Julius
    Dalibard, Jean
    PHYSICAL REVIEW A, 2010, 81 (05):