Minimum energy dissipation required for information processing using adiabatic quantum-flux-parametron circuits

被引:0
|
作者
Yamae, Taiki [1 ]
Takeuchi, Naoki [1 ,2 ]
Yoshikawa, Nobuyuki [1 ,3 ]
机构
[1] Yokohama Natl Univ, Inst Adv Sci, Yokohama, Kanagawa 2408501, Japan
[2] Natl Inst Adv Ind Sci & Technol, Global Res & Dev Ctr Business Quantum AI Technol, Tsukuba, Ibaraki 3058568, Japan
[3] Yokohama Natl Univ, Dept Elect & Comp Engn, Yokohama, Kanagawa 2408501, Japan
基金
日本学术振兴会;
关键词
HEAT-GENERATION; COMPUTATION; GATES;
D O I
10.1063/5.0187756
中图分类号
O59 [应用物理学];
学科分类号
摘要
The reversible quantum-flux-parametron (RQFP) is a reversible logic gate based on an energy-efficient superconductor logic family, namely, the adiabatic quantum-flux-parametron logic. The RQFP can perform logic operations in a thermodynamically reversible manner (i.e., without energy dissipation) in the quasi-static limit due to its logical and physical reversibility. Hence, it can be used for investigating the fundamental relations between information and thermodynamics from a circuit perspective. In the present study, we propose a reversible flip-flop (RFF) comprising an RQFP and investigate the minimum energy dissipation required for general information processing through numerical simulation using an RFF-based circuit. This circuit includes fundamental information processing (combinational logic, sequential logic, and data erasure) and can, thus, be used as a physical model for such an investigation. The numerical simulation of this circuit shows that both combinational and sequential logic operations can be conducted without energy dissipation in the quasi-static limit and that the amount of erased data determines the minimum energy dissipation. These results indicate that general information processing can be conducted in a thermodynamically reversible manner by using RQFP circuits as long as all data, including garbage outputs, are conserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Margin and Energy Dissipation of Adiabatic Quantum-Flux-Parametron Logic at Finite Temperature
    Takeuchi, N.
    Ehara, K.
    Inoue, K.
    Yamanashi, Y.
    Yoshikawa, N.
    [J]. IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2013, 23 (03)
  • [2] Systematic method to evaluate energy dissipation in adiabatic quantum-flux-parametron logic
    Yamae, Taiki
    Takeuchi, Naoki
    Yoshikawa, Nobuyuki
    [J]. JOURNAL OF APPLIED PHYSICS, 2019, 126 (17)
  • [3] Optimizing Adiabatic Quantum-Flux-Parametron (AQFP) Circuits using an Exact Database
    Marakkalage, Dewmini Sudara
    Riefler, Heinz
    De Micheli, Giovanni
    [J]. 2021 IEEE/ACM INTERNATIONAL SYMPOSIUM ON NANOSCALE ARCHITECTURES (NANOARCH), 2021,
  • [4] Measurement of 10 zJ energy dissipation of adiabatic quantum-flux-parametron logic using a superconducting resonator
    Takeuchi, N.
    Yamanashi, Y.
    Yoshikawa, N.
    [J]. APPLIED PHYSICS LETTERS, 2013, 102 (05)
  • [5] Binary Counters Using Adiabatic Quantum-Flux-Parametron Logic
    Yamae, Taiki
    Takeuchi, Naoki
    Yoshikawa, Nobuyuki
    [J]. IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2021, 31 (02) : 1 - 5
  • [6] Miniaturization of adiabatic quantum-flux-parametron circuits by adopting offset buffers
    Okuma, Yukihiro
    Takeuchi, Naoki
    Yamanashi, Yuki
    Yoshikawa, Nobuyuki
    [J]. SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2019, 32 (06):
  • [7] Adiabatic Quantum-Flux-Parametron: A Tutorial Review
    Takeuchi, Naoki
    Yamae, Taiki
    Ayala, Christopher L.
    Suzuki, Hideo
    Yoshikawa, Nobuyuki
    [J]. IEICE TRANSACTIONS ON ELECTRONICS, 2022, E105C (06) : 251 - 263
  • [8] Adiabatic Quantum-Flux-Parametron: Towards Building Extremely Energy-Efficient Circuits and Systems
    Olivia Chen
    Ruizhe Cai
    Yanzhi Wang
    Fei Ke
    Taiki Yamae
    Ro Saito
    Naoki Takeuchi
    Nobuyuki Yoshikawa
    [J]. Scientific Reports, 9
  • [9] Novel latch for adiabatic quantum-flux-parametron logic
    Takeuchi, Naoki
    Ortlepp, Thomas
    Yamanashi, Yuki
    Yoshikawa, Nobuyuki
    [J]. JOURNAL OF APPLIED PHYSICS, 2014, 115 (10)
  • [10] A Buffer and Splitter Insertion Framework for Adiabatic Quantum-Flux-Parametron Superconducting Circuits
    Cai, Ruizhe
    Chen, Olivia
    Ren, Ao
    Liu, Ning
    Yoshikawa, Nobuyuki
    Wang, Yanzhi
    [J]. 2019 IEEE 37TH INTERNATIONAL CONFERENCE ON COMPUTER DESIGN (ICCD 2019), 2019, : 429 - 436