A generalization of formulas for the discriminants of quasi-orthogonal polynomials with applications to hypergeometric polynomials

被引:0
|
作者
Matsumura, Hideki [1 ,2 ]
机构
[1] Keio Univ, Fac Sci & Technol, Dept Math, 3-14-1 Hiyoshi,Kohoku, Yokohama, Kanagawa, Japan
[2] Tokyo Metropolitan Univ, Hachioji, Japan
来源
RAMANUJAN JOURNAL | 2024年 / 64卷 / 03期
关键词
Discriminant; Resultant; Quasi-orthogonal polynomial; Recurrence relation; Differential equation; Hypergeometric polynomial;
D O I
10.1007/s11139-024-00852-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we extend the classical framework for computing discriminants of special quasi-orthogonal polynomials from Schur's resultant formula, and establish a framework for computing discriminants of a sufficiently broader class of polynomials from the resultant formulas that are proven by Ulas and Turaj. More precisely, we derive a formula for the discriminant of a sequence { r A , n + c r A , n - 1 } \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{r_{A,n}+c r_{A,n-1}\}$$\end{document} of polynomials. Here, c is an element of a field K and { r A , n } \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{r_{A,n}\}$$\end{document} is a sequence of polynomials satisfying a certain recurrence relation. There are several works computing the discriminants of given polynomials. For example, Kaneko-Niiho and Mahlburg-Ono independently proved the formula for the discriminants of certain hypergeometric polynomials that are related to j-invariants of supersingular elliptic curves. Sawa-Uchida proved the formula for the discriminants of quasi-Jacobi polynomials and applied it to prove the nonexistence of certain rational quadrature formulas. Our main theorem presents a uniform way to prove a vast generalization of the above formulas for the discriminants.
引用
收藏
页码:835 / 856
页数:22
相关论文
共 50 条