Many modern cryptographic primitives for hashing and (authenticated) encryption make use of constructions that are instantiated with an iterated cryptographic permutation that operates on a fixed-width state consisting of an array of bits. Often, such permutations are the repeated application of a relatively simple round function consisting of a linear layer and a non-linear layer. These constructions do not require that the underlying function is a permutation and they can plausibly be based on a non-invertible transformation. Recently, Grassi proposed the use of non-invertible mappings operating on arrays of digits that are elements of a finite field of odd characteristic for so-called MPC-/FHE-/ZK-friendly symmetric cryptographic primitives. In this work, we consider a mapping that we call gamma \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} that has a simple expression and is based on squaring. We discuss, for the first time, the differential and linear propagation properties of gamma \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} and observe that these follow the same rules up to a relabeling of the digits. This is an intriguing property that, as far as we know, only exists for gamma \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} and the binary mapping chi 3 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _{_{3}}$$\end{document} that is used in the cryptographic permutation Xoodoo. Moreover, we study the implications of its non-invertibility on differentials with zero output difference and on biases at the output of the gamma \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} mapping and show that they are as small as they can possibly be.