Chain-imprimitive, flag-transitive 2-designs

被引:0
|
作者
Amarra, Carmen [1 ,2 ]
Devillers, Alice [1 ]
Praeger, Cheryl E. [1 ]
机构
[1] Univ Western Australia, Ctr Math Symmetry & Computat, 35 Stirling Highway, Crawley, WA 6009, Australia
[2] Univ Philippines Diliman, Inst Math, CP Garcia Ave, Quezon City 1101, Philippines
基金
澳大利亚研究理事会;
关键词
Flag-transitive; 2-design; Point-imprimitive; Partition chain; Block-transitive; DESIGNS;
D O I
10.1007/s10623-024-01400-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider 2-designs which admit a group of automorphisms that is flag-transitive and leaves invariant a chain of nontrivial point-partitions. We build on our recent work on 2-designs which are block-transitive but not necessarily flag-transitive. In particular we use the concept of the "array" of a point subset with respect to the chain of point-partitions; the array describes the distribution of the points in the subset among the classes of each partition. We obtain necessary and sufficient conditions on the array in order for the subset to be a block of such a design. By explicit construction we show that for any s >= 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s \ge 2$$\end{document} , there are infinitely many 2-designs admitting a flag-transitive group that preserves an invariant chain of point-partitions of length s. Moreover an exhaustive computer search, using Magma, seeking designs with e 1 e 2 e 3 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e_1e_2e_3$$\end{document} points (where each e i <= 50 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e_i\le 50$$\end{document} ) and a partition chain of length s = 3 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s=3$$\end{document} , produced 57 such flag-transitive designs, among which only three designs arise from our construction-so there is still much to learn.
引用
收藏
页码:2491 / 2510
页数:20
相关论文
共 50 条
  • [1] On flag-transitive imprimitive 2-designs
    Devillers, Alice
    Praeger, Cheryl E.
    [J]. JOURNAL OF COMBINATORIAL DESIGNS, 2021, 29 (08) : 552 - 574
  • [2] Imprimitive flag-transitive symmetric designs
    Praeger, Cheryl E.
    Zhou, Shenglin
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (07) : 1381 - 1395
  • [3] A classification of flag-transitive point-imprimitive 2-designs with block size 6
    Zhan, Xiaoqin
    Zhou, Shenglin
    [J]. JOURNAL OF COMBINATORIAL DESIGNS, 2018, 26 (04) : 147 - 153
  • [4] Flag-transitive, point-imprimitive 2-designs and direct products of symmetric groups
    Chen, Jianfu
    Zhou, Shenglin
    Shen, Jiaxin
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (02):
  • [5] On flag-transitive automorphism groups of 2-designs
    Zhong, Chuyi
    Zhou, Shenglin
    [J]. DISCRETE MATHEMATICS, 2023, 346 (02)
  • [6] Flag-transitive symmetric 2-designs of prime order
    Lu, Ziwei
    Zhou, Shenglin
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2024, 92 (02) : 259 - 266
  • [7] Flag-transitive point-quasiprimitive 2-designs
    Zhang, Zhilin
    Zhou, Shenglin
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2018, 86 (09) : 1963 - 1971
  • [8] Flag-transitive symmetric 2-designs of prime order
    Ziwei Lu
    Shenglin Zhou
    [J]. Designs, Codes and Cryptography, 2024, 92 : 259 - 266
  • [9] Constructing flag-transitive, point-imprimitive designs
    Cameron, Peter J.
    Praeger, Cheryl E.
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2016, 43 (04) : 755 - 769
  • [10] Constructing flag-transitive, point-imprimitive designs
    Peter J. Cameron
    Cheryl E. Praeger
    [J]. Journal of Algebraic Combinatorics, 2016, 43 : 755 - 769