Joint Spatio-Temporal Modeling for Semantic Change Detection in Remote Sensing Images

被引:11
|
作者
Ding, Lei [1 ]
Zhang, Jing [2 ]
Guo, Haitao [3 ]
Zhang, Kai [4 ]
Liu, Bing [1 ]
Bruzzone, Lorenzo [2 ]
机构
[1] PLA Strateg Support Force Informat Engn Univ, Dept Big Data Anal, Zhengzhou 450001, Peoples R China
[2] Univ Trento, Dept Informat Engn & Comp Sci, I-38123 Trento, Italy
[3] PLA Strateg Support Force Informat Engn Univ, Dept Geospatial Informat, Zhengzhou 450001, Peoples R China
[4] Shandong Normal Univ, Sch Informat Sci & Engn, Jinan 250358, Peoples R China
基金
中国国家自然科学基金;
关键词
Convolutional neural network (CNN); remote sensing (RS); semantic change detection (SCD); semantic segmentation; vision transformer; NETWORK;
D O I
10.1109/TGRS.2024.3362795
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Semantic change detection (SCD) refers to the task of simultaneously extracting changed areas and their semantic categories (before and after the changes) in remote sensing images (RSIs). This is more meaningful than binary change detection (BCD) since it enables detailed change analysis in the observed areas. Previous works established triple-branch convolutional neural network (CNN) architectures as the paradigm for SCD. However, it remains challenging to exploit semantic information with a limited amount of change samples. In this work, we investigate to jointly consider the spatio-temporal dependencies to improve the accuracy of SCD. First, we propose a semantic change transformer (SCanFormer) to explicitly model the "from-to" semantic transitions between the bitemporal RSIs. Then, we introduce a semantic learning scheme to leverage the spatio-temporal constraints, which are coherent to the SCD task, to guide the learning of semantic changes. The resulting network semantic change network (SCanNet) significantly outperforms the baseline method in terms of both detection of critical semantic changes and semantic consistency in the obtained bitemporal results. It achieves the state-of-the-art (SOTA) accuracy on two benchmark datasets for the SCD.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [1] A fuzzy spatio-temporal contextual classifier for remote sensing images
    Serpico, SB
    Melgani, F
    [J]. IGARSS 2000: IEEE 2000 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOL I - VI, PROCEEDINGS, 2000, : 2438 - 2440
  • [2] Bi-Temporal Semantic Reasoning for the Semantic Change Detection in HR Remote Sensing Images
    Ding, Lei
    Guo, Haitao
    Liu, Sicong
    Mou, Lichao
    Zhang, Jing
    Bruzzone, Lorenzo
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [3] Spatio-temporal modeling of lung images for cancer detection
    Shen, L
    Zheng, W
    Gao, L
    Huang, H
    Makedon, F
    Pearlman, J
    [J]. ONCOLOGY REPORTS, 2006, 15 : 1085 - 1089
  • [4] SPATIO-TEMPORAL CHANGE MODELING OF LULC: A SEMANTIC KRIGING APPROACH
    Bhattacharjee, Shrutilipi
    Ghosh, Soumya K.
    [J]. ISPRS International Workshop on Spatiotemporal Computing, 2015, : 177 - 184
  • [5] Extraction of coherent zones by spatio-temporal analysis of remote sensing images
    Guyet, Thomas
    Malinowski, Simon
    Benyounes, Mohand Cherif
    [J]. REVUE INTERNATIONALE DE GEOMATIQUE, 2015, 25 (04): : 473 - 494
  • [6] BI-DIRECTIONAL TEMPORAL MODELLING FOR SEMANTIC CHANGE DETECTION IN REMOTE SENSING IMAGES
    Zhang, Jing
    Ding, Lei
    Bruzzone, Lorenzo
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5503 - 5506
  • [7] Wavelet Spatio-Temporal Change Detection on Multitemporal SAR Images
    Fonseca, Rodney V.
    Negri, Rogerio G.
    Pinheiro, Aluisio
    Atto, Abdourrahmane Mahamane
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 4013 - 4023
  • [8] Qualitative semantic spatio-temporal reasoning based on description logics for modeling dynamics of spatio-temporal objects in satellite images
    Ghazouani, Fethi
    Farah, Imed Riadh
    Solaiman, Basel
    [J]. 2018 4TH INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR SIGNAL AND IMAGE PROCESSING (ATSIP), 2018,
  • [9] Spatio-Temporal Fusion Of UAV Remote Sensing Images Based on Pyramid Method
    Jiang, Chao
    Yu, Yanfeng
    [J]. Engineering Intelligent Systems, 2022, 30 (06): : 465 - 474
  • [10] Semantic Information Collaboration Network for Semantic Change Detection in Remote Sensing Images
    Ning, Xiaogang
    He, You
    Zhang, Hanchao
    Zhang, Ruiqian
    Chang, Dong
    Hao, Minghui
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 12893 - 12909