A new data normalization method for unsupervised anomaly intrusion detection

被引:0
|
作者
Longzheng CAIJian CHENYun KETao CHENZhigang LI Engineering and Commerce CollegeSouthCentral University for NationalitiesWuhan China Guangdong Institute of Science and TechnologyZhuhai China [1 ,2 ,1 ,1 ,1 ,1 ,430065 ,2 ,519090 ]
机构
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Unsupervised anomaly detection can detect attacks without the need for clean or labeled training data.This paper studies the application of clustering to unsupervised anomaly detection(ACUAD).Data records are mapped to a feature space.Anomalies are detected by determining which points lie in the sparse regions of the feature space.A critical element for this method to be effective is the definition of the distance function between data records.We propose a unified normalization distance framework for records with numeric and nominal features mixed data.A heuristic method that computes the distance for nominal features is proposed,taking advantage of an important characteristic of nominal features-their probability distribution.Then,robust methods are proposed for mapping numeric features and computing their distance,these being able to tolerate the impact of the value difference in scale and diversification among features,and outliers introduced by intrusions.Empirical experiments with the KDD 1999 dataset showed that ACUAD can detect intrusions with relatively low false alarm rates compared with other approaches.
引用
收藏
页码:778 / 784
页数:7
相关论文
共 50 条
  • [2] A new data normalization method for unsupervised anomaly intrusion detection
    Cai, Long-zheng
    Chen, Jian
    Ke, Yun
    Chen, Tao
    Li, Zhi-gang
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE C-COMPUTERS & ELECTRONICS, 2010, 11 (10): : 778 - 784
  • [3] A new data normalization method for unsupervised anomaly intrusion detection
    Long-zheng Cai
    Jian Chen
    Yun Ke
    Tao Chen
    Zhi-gang Li
    Journal of Zhejiang University SCIENCE C, 2010, 11 : 778 - 784
  • [4] UNSUPERVISED VARIABILITY NORMALIZATION FOR ANOMALY DETECTION
    Artola, Aitor
    Kolodziej, Yannis
    Morel, Jean-Michel
    Ehret, Thibaud
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 989 - 993
  • [5] Hybrid Intrusion Detection System using an Unsupervised method for Anomaly-based Detection
    Bhadauria, Saumya
    Mohanty, Tamanna
    2021 IEEE INTERNATIONAL CONFERENCE ON ADVANCED NETWORKS AND TELECOMMUNICATIONS SYSTEMS (IEEE ANTS), 2021,
  • [6] Anomaly Based Network Intrusion Detection with Unsupervised Outlier Detection
    Zhang, Jiong
    Zulkernine, Mohammad
    2006 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, VOLS 1-12, 2006, : 2388 - 2393
  • [7] A Novel Unsupervised Anomaly Detection Approach for Intrusion Detection System
    Chen, Weiwei
    Kong, Fangang
    Mei, Feng
    Yuan, Guiqin
    Li, Bo
    2017 IEEE 3RD INTERNATIONAL CONFERENCE ON BIG DATA SECURITY ON CLOUD (BIGDATASECURITY, IEEE 3RD INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE AND SMART COMPUTING, (HPSC) AND 2ND IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT DATA AND SECURITY (IDS), 2017, : 69 - 73
  • [8] Quantitative Comparison of Unsupervised Anomaly Detection Algorithms for Intrusion Detection
    Falcao, Filipe
    Zoppi, Tommaso
    Viera Silva, Caio Barbosa
    Santos, Anderson
    Fonseca, Baldoino
    Ceccarelli, Andrea
    Bondavalli, Andrea
    SAC '19: PROCEEDINGS OF THE 34TH ACM/SIGAPP SYMPOSIUM ON APPLIED COMPUTING, 2019, : 318 - 327
  • [9] An Unsupervised Network Intrusion Detection Based on Anomaly Analysis
    Zhong, Jiang
    Deng, Xiongbing
    Wen, Luosheng
    Feng, Yong
    ICICTA: 2009 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION, VOL II, PROCEEDINGS, 2009, : 367 - +
  • [10] A method of SVM with Normalization in Intrusion Detection
    Li, Weijun
    Liu, Zhenyu
    2011 2ND INTERNATIONAL CONFERENCE ON CHALLENGES IN ENVIRONMENTAL SCIENCE AND COMPUTER ENGINEERING (CESCE 2011), VOL 11, PT A, 2011, 11 : 256 - 262