Synthetic two-dimensional electronics for transistor scaling

被引:0
|
作者
Zihan Wang
Yan Yang
Bin Hua
Qingqing Ji
机构
[1] SchoolofPhysicalScienceandTechnology,ShanghaiTechUniversity
关键词
2D materials; nanostructures; synthetic electronics; transistor scaling;
D O I
暂无
中图分类号
学科分类号
摘要
Two-dimensional(2D) materials have been considered to hold promise for transistor ultrascaling,thanks to their atomically thin body immune to short-channel effects.The lower channel size limit of 2D transistors is yet to be revealed,as this size is below the spatial resolution of most lithographic techniques.In recent years,chemical approaches such as chemical vapor deposition(CVD) and metalorganic CVD(MOCVD) have been established to grow atomically precise nanostructures and heterostructures,thus allowing for synthetic construction of ultrascaled transistors.In this review,we summarize recent developments on the precise synthesis and defect engineering of electronic nanostructures/heterostructures aiming for transistor applications.We demonstrate with rich examples that ultrascaled 2D transistors are achievable by finely tuning the "growthas-fabrication" process and could host a plethora of new device physics.Finally,by plotting the scaling trend of 2D transistors,we conclude that synthetic electronics possess superior scaling capability and could facilitate the development of post-Moore nanoelectronics.
引用
收藏
页码:145 / 161
页数:17
相关论文
共 50 条
  • [1] Synthetic two-dimensional electronics for transistor scaling
    Wang, Zihan
    Yang, Yan
    Hua, Bin
    Ji, Qingqing
    [J]. FRONTIERS OF PHYSICS, 2023, 18 (06)
  • [2] Two-dimensional materials and their prospects in transistor electronics
    Schwierz, F.
    Pezoldt, J.
    Granzner, R.
    [J]. NANOSCALE, 2015, 7 (18) : 8261 - 8283
  • [3] Displacement amplitude scaling of a two-dimensional synthetic jet
    Fugal, SR
    Smith, BL
    Spall, RE
    [J]. PHYSICS OF FLUIDS, 2005, 17 (04) : 045103 - 1
  • [4] Experimental realization of a two-dimensional to two-dimensional tunnel transistor
    Leuther, A
    Hollfelder, M
    Hardtdegen, H
    Luth, H
    [J]. SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1996, 11 (05) : 772 - 775
  • [5] Radiation Resilient Two-Dimensional Electronics
    Schranghamer, Thomas F.
    Pannone, Andrew
    Ravichandran, Harikrishnan
    Stepanoff, Sergei P.
    Trainor, Nicholas
    Redwing, Joan M.
    Wolfe, Douglas E.
    Das, Saptarshi
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (22) : 26946 - 26959
  • [6] Two-dimensional molecular electronics circuits
    Luo, Y
    Collier, CP
    Jeppesen, JO
    Nielsen, KA
    DeIonno, E
    Ho, G
    Perkins, J
    Tseng, HR
    Yamamoto, T
    Stoddart, JF
    Heath, JR
    [J]. CHEMPHYSCHEM, 2002, 3 (06) : 519 - +
  • [7] Two-dimensional molecular electronics circuits
    Luo, Yi
    Collier, C. Patrick
    Jeppesen, Jan O.
    Nielsen, Kent A.
    DeIonno, Erica
    Ho, Greg
    Perkins, Julie
    Tseng, Hsian-Rong
    Yamamoto, Tohru
    Stoddart, J. Fraser
    Heath, James R.
    [J]. 2002, Wiley-VCH Verlag (03)
  • [8] Two-dimensional material electronics and photonics
    Zhu, Wenjuan
    [J]. CARBON NANOTUBES, GRAPHENE, AND EMERGING 2D MATERIALS FOR ELECTRONIC AND PHOTONIC DEVICES VIII, 2015, 9552
  • [9] Analogue two-dimensional semiconductor electronics
    Polyushkin, Dmitry K.
    Wachter, Stefan
    Mennel, Lukas
    Paur, Matthias
    Paliy, Maksym
    Iannaccone, Giuseppe
    Fiori, Gianluca
    Neumaier, Daniel
    Canto, Barbara
    Mueller, Thomas
    [J]. NATURE ELECTRONICS, 2020, 3 (08) : 486 - 491
  • [10] Analogue two-dimensional semiconductor electronics
    Dmitry K. Polyushkin
    Stefan Wachter
    Lukas Mennel
    Matthias Paur
    Maksym Paliy
    Giuseppe Iannaccone
    Gianluca Fiori
    Daniel Neumaier
    Barbara Canto
    Thomas Mueller
    [J]. Nature Electronics, 2020, 3 : 486 - 491