The direct numerical simulation (DNS) method with 16 steps detailed chemical kinetics was applied to a lifted turbulent jet flame with H2/N2 fuel issuing into a wide hot coflow of lean combustion products,at temperature of 1045 K and low oxygen concentrations. The chemical reactions were handled by the library function of CHEMKIN which was called by the main program in every time step. Parallel com-putational technology based on message passing interface method (MPI) was used in the simulation. All the cases were run by 12 CPUs on a high performance computer system. Faver-averaged DNS re-sults were obtained by long time averaging the transient profile and compared with the experimental data. The roll-up and evolution of the vortices in jet flame were well captured. The vortices in the same rotating direction attracted each other and those in different rotating directions repulsed each other. Through complex interactions between vortices,the original symmetrical vortex structure could be converted into nonsymmetrical and more complex structures by combination,distortion and splitting of the vortices. The transient profiles of H,OH and H2O mass fraction at 5.76 ms showed the flame structure in jet flame,especially the autoignition regions clearly. The lift-off height was about 9 d―11 d,in agreement with the experimental observation. At the corner point of the flame sheet indicated by OH and H profiles,the combustion was always enhanced by the flame curvature and extended resident time. The profiles of turbulence intensities show that the flames were diffused from the original two outside flame sheets into the core. The DNS results can be considered in developing more accurate and more universal turbulence models.
机构:
Zhejiang Univ, Inst Thermal Power Engn, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R ChinaZhejiang Univ, Inst Thermal Power Engn, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R China
Wang ZhiHua
Fan JianRen
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Inst Thermal Power Engn, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R ChinaZhejiang Univ, Inst Thermal Power Engn, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R China
Fan JianRen
Zhou JunHu
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Inst Thermal Power Engn, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R ChinaZhejiang Univ, Inst Thermal Power Engn, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R China
Zhou JunHu
Cen KeFa
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Inst Thermal Power Engn, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R ChinaZhejiang Univ, Inst Thermal Power Engn, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R China
机构:
Zhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Zhejiang, Peoples R ChinaZhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Zhejiang, Peoples R China
Luo, Kun
Bai, Yun
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Zhejiang, Peoples R ChinaZhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Zhejiang, Peoples R China
Bai, Yun
Jin, Tai
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Zhejiang, Peoples R ChinaZhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Zhejiang, Peoples R China
Jin, Tai
Qiu, Kunzan
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Zhejiang, Peoples R ChinaZhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Zhejiang, Peoples R China
Qiu, Kunzan
Fan, Jianren
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Zhejiang, Peoples R ChinaZhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Zhejiang, Peoples R China