A new streamline diffusion finite element method for the generalized Oseen problem

被引:0
|
作者
Chao XU [1 ]
Dongyang SHI [2 ]
Xin LIAO [2 ]
机构
[1] Faculty of Mathematics and Physics Education, Luoyang Institute of Science and Technology
[2] School of Mathematics and Statistics, Zhengzhou University
基金
中国国家自然科学基金;
关键词
streamline diffusion method; Bernardi-Raugel element; Oseen problem; superconvergent error estimate;
D O I
暂无
中图分类号
O241.82 [偏微分方程的数值解法];
学科分类号
070102 ;
摘要
This paper aims to present a new streamline diffusion method with low order rectangular Bernardi-Raugel elements to solve the generalized Oseen equations. With the help of the Bramble-Hilbert lemma, the optimal errors of the velocity and pressure are estimated, which are independent of the considered parameter ε. With an interpolation postprocessing approach, the superconvergent error of the pressure is obtained. Finally,a numerical experiment is carried out to confirm the theoretical results.
引用
收藏
页码:291 / 304
页数:14
相关论文
共 50 条
  • [1] A new streamline diffusion finite element method for the generalized Oseen problem
    Xu, Chao
    Shi, Dongyang
    Liao, Xin
    [J]. APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2018, 39 (02) : 291 - 304
  • [2] A new streamline diffusion finite element method for the generalized Oseen problem
    Chao Xu
    Dongyang Shi
    Xin Liao
    [J]. Applied Mathematics and Mechanics, 2018, 39 : 291 - 304
  • [3] An optimal streamline diffusion finite element method for a singularly perturbed problem
    Chen, L
    Xu, JC
    [J]. RECENT ADVANCES IN ADAPTIVE COMPUTATION, PROCEEDINGS, 2005, 383 : 191 - 201
  • [4] Stabilized finite element methods for the generalized Oseen problem
    Braack, M.
    Burman, E.
    John, V.
    Lube, G.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (4-6) : 853 - 866
  • [5] Streamline diffusion finite element method for stationary incompressible natural convection problem
    Wang, Yanqing
    Su, Haiyan
    Feng, Xinlong
    [J]. NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2018, 74 (02) : 519 - 537
  • [6] The streamline-diffusion finite element method on graded meshes for a convection-diffusion problem
    Yin, Yunhui
    Zhu, Peng
    [J]. APPLIED NUMERICAL MATHEMATICS, 2019, 138 : 19 - 29
  • [7] How accurate is the streamline diffusion finite element method?
    Zhou, GH
    [J]. MATHEMATICS OF COMPUTATION, 1997, 66 (217) : 31 - 44
  • [8] THE CHARACTERISTIC STREAMLINE DIFFUSION FINITE-ELEMENT METHOD
    JOHNSON, C
    [J]. MATEMATICA APLICADA E COMPUTACIONAL, 1991, 10 (03): : 229 - 242
  • [9] A stabilized Nitsche cut finite element method for the Oseen problem
    Massing, A.
    Schott, B.
    Wall, W. A.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 328 : 262 - 300
  • [10] FINITE ELEMENT METHOD TO A GENERALIZED ELECTROMAGNETO-THERMOELASTIC PROBLEM WITH DIFFUSION
    He, Tianhu
    Li, Yanyan
    Shi, Shuanhu
    [J]. INTERNATIONAL JOURNAL OF APPLIED MECHANICS, 2012, 4 (04)