固态电解质Li1+xAlxTi2–x(PO4)3中Li+的迁移特性

被引:0
|
作者
李梅 [1 ]
钟淑英 [1 ]
胡军平 [2 ]
孙宝珍 [1 ]
徐波 [1 ]
机构
[1] 江西师范大学物理与通信电子学院
[2] 南昌工程学院理学院
关键词
全固态Li+电池; Al掺杂; Li1+xAlxTi2–x(PO4)3; Li+迁移;
D O I
暂无
中图分类号
TM912 [蓄电池]; O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Li1+xAlxTi2-x(PO4)3 (LATP)是一种颇具前景的NASICON型锂离子固态电解质.本文通过第一性原理计算研究了不同Al掺杂浓度(x=0.00,0.16,0.33,0.50)对LATP的结构特性、电学特性以及Li+迁移特性的影响.结果表明,Al能够稳定掺杂进入LiTi2(PO4)3(LTP)的晶体结构当中.当Al掺杂浓度x=0.16时,Li—O键的平均键长最长,成键强度最弱,而Ti—O键强度随Al掺杂浓度变化不大.Al掺杂浓度对LATP带隙的影响不大,但Al附近的O原子聚集了更多的负电荷,形成AlO6极化中心.Li+不同的迁移方式(空位迁移、间隙位迁移和协同迁移)在Al掺杂浓度不同时展现出复杂的能垒变化,Li+在空位迁移中迁移势垒随Al掺杂浓度的增大而升高,而在间隙位迁移中Li+的迁移势垒变化相反,由于协同迁移中涉及空位和间隙位两种位点,Li+的迁移势垒表现为随Al掺杂浓度的升高先降低后升高的复杂变化.当x=0.50时,LATP具有最低的Li+迁移势垒0.342 eV,这个势垒值是间隙位迁移的结果.因此,通过改变Al掺杂浓度,可改变间隙Li+浓度及迁移通道结构,进而调节Li+的迁移性能,提高LATP中的Li+导电性能.
引用
收藏
页码:362 / 372
页数:11
相关论文
共 39 条
  • [1] Progress and perspective of Li1 + xAlxTi2‐x(PO4)3 ceramic electrolyte in lithium batteries.[J].Yang Ke;Chen Likun;Ma Jiabin;He YanBing;Kang Feiyu.InfoMat.2021, 11
  • [2] Interfacial Electronic Properties Dictate Li Dendrite Growth in Solid Electrolytes
    Tian, Hong-Kang
    Liu, Zhe
    Ji, Yanzhou
    Chen, Long-Qing
    Qi, Yue
    [J]. CHEMISTRY OF MATERIALS, 2019, 31 (18) : 7351 - 7359
  • [3] Influence of precursor calcination temperature on sintering and conductivity of Li<sub>1.5</sub>Al<sub>0.5</sub>Ti<sub>1.5</sub>(PO<sub>4</sub>)<sub>3</sub> ceramics.[J].Kotobuki;Koishi.Journal of Asian Ceramic Societies.2019, 1
  • [4] Unique rhombus-like precursor for synthesis of Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 solid electrolyte with high ionic conductivity.[J].Shengnan He;Youlong Xu;Baofeng Zhang;Xiaofei Sun;Yanjun Chen;Yanling Jin.Chemical Engineering Journal.2018,
  • [5] Mechanisms and properties of ion-transport in inorganic solid electrolytes.[J].Bingkai Zhang;Rui Tan;Luyi Yang;Jiaxin Zheng;Kecheng Zhang;Sijia Mo;Zhan Lin;Feng Pan.Energy Storage Materials.2018,
  • [6] First-principles insight into the structural fundamental of super ionic conducting in NASICON M Ti 2 (PO 4 ) 3 ( M = Li; Na) materials for rechargeable batteries.[J].Xia Lu;Senhao Wang;Ruijuan Xiao;Siqi Shi;Hong Li;Liquan Chen.Nano Energy.2017,
  • [7] Origin of fast ion diffusion in super-ionic conductors..[J].He Xingfeng;Zhu Yizhou;Mo Yifei.Nature communications.2017, 1
  • [8] A single crystal X-ray and powder neutron diffraction study on NASICON-type Li 1+ x Al x Ti 2− x (PO 4 ) 3 (0 ≤ x ≤ 0.5) crystals: Implications on ionic conductivity.[J].G.J. Redhammer;D. Rettenwander;S. Pristat;E. Dashjav;C.M.N. Kumar;D. Topa;F. Tietz.Solid State Sciences.2016,
  • [9] Solid-State NMR Investigations on the Structure and Dynamics of the Ionic Conductor Li1+xAlxTi2–x(PO4)3 (0.0?≤?x?≤?1.0).[J].Vinod Chandran C.;Pristat Sylke;Witt Elena;Tietz Frank;Heitjans Paul.The Journal of Physical Chemistry C.2016, 16
  • [10] Lithium Diffusion Pathway in Li1.3Al0.3Ti1.7(PO4)3 (LATP) Superionic Conductor
    Monchak, Mykhailo
    Hupfer, Thomas
    Senyshyn, Anatoliy
    Boysen, Hans
    Chernyshov, Dmitry
    Hansen, Thomas
    Schell, Karl G.
    Bucharsky, Ethel C.
    Hoffmann, Michael J.
    Ehrenberg, Helmut
    [J]. INORGANIC CHEMISTRY, 2016, 55 (06) : 2941 - 2945