Utility water supply forecast via a GM (1,1) weighted Markov chain附视频

被引:0
|
作者
Yimei TIAN Hailiang SHEN Li ZHANG Xiangrui LV College of Environmental Science Engineering Tianjin University Tianjin China School of Engineering University of Guelph Guelph Ontario NG W Canada [1 ,2 ,1 ,1 ,1 ,300072 ,2 ,1 ,2 ,1 ]
机构
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This paper describes the procedure of using the GM (1,1) weighted Markov chain (GMWMC) to forecast the utility water supply, a quantity that usually has significant temporal variability. The GMWMC is formulated into five steps: (1) use GM (1,1) to fit the trend of the data, and obtain the relative error of the fitted values; (2) divide the relative error into ‘state’ data based on pre-set intervals; (3) calibrate the weighted Markov chain model: herein the parameters are the pre-set interval and the step of transition matrix (TM); (4) by using auto-correlation coefficient as the weight, the Markov chain provides the prediction interval. Then the mid-value of the interval is selected as the relative error for the data. Upon combining the data and its relative error, the predicted magnitude in a specific time period is obtained; and, (5) validate the model. Commonly, static intervals are used in both model calibration and validation stages, usually causing large errors. Thus, a dynamic adjustment interval (DAI) is proposed for a better performance. The proposed procedure is described and demonstrated through a case study, which shows that the DAI can usually achieve a better performance than the static interval, and the best TM may exist for certain data.
引用
收藏
页码:677 / 682
页数:6
相关论文
共 7 条
  • [1] 灰色系统理论和马尔柯夫链相结合的网络流量预测方法
    姚奇富
    李翠凤
    马华林
    张森
    [J]. 浙江大学学报(理学版), 2007, (04) : 396 - 400
  • [2] 桥梁技术状况预测的灰色马尔可夫链模型研究
    耿波
    王君杰
    张谢东
    [J]. 武汉理工大学学报(交通科学与工程版), 2007, (01) : 107 - 110
  • [3] 基于遗传模拟退火算法的神经网络模型在陕西省需水预测中的应用
    巩琳琳
    [J]. 地下水, 2006, (05) : 10 - 13
  • [4] 基于神经元网络模型的城市用水量预测[J] 邹广宇,王洪峰,汪定伟,张国祥 信息与控制 2004, 03
  • [5] 公路货运量灰色模型—马尔可夫链预测方法研究[J] 盖春英,裴玉龙 中国公路学报 2003, 03
  • [6] 城市用水量短期预测方法的比较(英文)[J] 刘洪波,张宏伟 Transactions of Tianjin University 2002, 03
  • [7] A GM(1,1)–Markov chain combined model with an application to predict the number of Chinese international airlines[J] Guo-Dong Li;Daisuke Yamaguchi;Masatake Nagai Technological Forecasting & Social Change 2006,