AN M/M/C RETRIAL QUEUEING SYSTEM WITH BERNOULLI VACATIONS

被引:0
|
作者
B.Krishna KUMAR [1 ]
R.RUKMANI [2 ]
V.THANGARAJ [3 ]
机构
[1] Department of Mathematics,College of Engineering,Anna University,Chennai,600 025,India
[2] Department of Mathematics,Pachaiyappa's College,Chennai,600030,India  3. Ramanujan Institute for Advanced Study in Mathematics,University of Madras,Chennai,600 005,India
关键词
Retrial queue; Bernoulli vacation; matrix-geometric methods; busy period; vain retrial; ideal retrial;
D O I
暂无
中图分类号
O226 [排队论(随机服务系统)];
学科分类号
070105 ; 1201 ;
摘要
In this paper,a steady-state Markovian multi-server retrial queueing system with Bernoulli vacation scheduling service is studied.Using matrix-geometric approach,various interesting and important system performance measures are obtained.Further,the probability descriptors like ideal retrial and vain retrial are provided.Finally,extensive numerical illustrations are presented to indicate the quantifying nature of the approach to obtain solutions to this queueing system.
引用
收藏
页码:222 / 242
页数:21
相关论文
共 50 条
  • [1] An M/M/C retrial queueing system with Bernoulli vacations
    Kumar, B. Krishna
    Rukmani, R.
    Thangaraj, V.
    [J]. JOURNAL OF SYSTEMS SCIENCE AND SYSTEMS ENGINEERING, 2009, 18 (02) : 222 - 242
  • [2] An M/M/C retrial queueing system with Bernoulli vacations
    B. Krishna Kumar
    R. Rukmani
    V. Thangaraj
    [J]. Journal of Systems Science and Systems Engineering, 2009, 18
  • [3] Performance Study of an M/M/1 Retrial Queueing System with Balking, Dissatisfied Customers, and Server Vacations
    Khan, Ismailkhan Enayathulla
    Paramasivam, Rajendran
    [J]. CONTEMPORARY MATHEMATICS, 2023, 4 (03): : 467 - 483
  • [4] An M/G/1 Bernoulli feedback retrial queueing system with negative customers
    Kumar, B. Krishna
    Madheswari, S. Pavai
    Lakshmi, S. R. Anantha
    [J]. OPERATIONAL RESEARCH, 2013, 13 (02) : 187 - 210
  • [5] An M/G/1 Bernoulli feedback retrial queueing system with negative customers
    B. Krishna Kumar
    S. Pavai Madheswari
    S. R. Anantha Lakshmi
    [J]. Operational Research, 2013, 13 : 187 - 210
  • [6] Analysis of an M/M/c Queueing System with Impatient Customers and Synchronous Vacations
    Yue, Dequan
    Yue, Wuyi
    Zhao, Guoxi
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [7] Study of the M/M/1 retrial queueing system with disasters
    Meloshnikova, Natalya P.
    Nazarov, Anatoly A.
    Fedorova, Ekaterina A.
    [J]. VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-UPRAVLENIE VYCHISLITELNAJA TEHNIKA I INFORMATIKA-TOMSK STATE UNIVERSITY JOURNAL OF CONTROL AND COMPUTER SCIENCE, 2024, (68):
  • [8] M/M/1 retrial queue with working vacations
    Do, Tien Van
    [J]. ACTA INFORMATICA, 2010, 47 (01) : 67 - 75
  • [9] M/M/1 retrial queue with working vacations
    Tien Van Do
    [J]. Acta Informatica, 2010, 47 : 67 - 75
  • [10] An M/M/2 queueing system with heterogeneous servers and multiple vacations
    Kumar, BK
    Madheswari, SP
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2005, 41 (13) : 1415 - 1429