A 31.7-GHz high linearity millimeter-wave CMOS LNA using an ultra-wideband input matching technique

被引:0
|
作者
杨格亮
王志功
李智群
李芹
李竹
刘法恩
机构
[1] InstituteofRF-&OE-ICs,SoutheastUniversity
关键词
D O I
暂无
中图分类号
TN722.3 [低噪声放大器];
学科分类号
摘要
<正>A CMOS low-noise amplifier(LNA) operating at 31.7 GHz with a low input return loss(S11) and high linearity is proposed.The wideband input matching was achieved by employing a simple LC compounded network to generate more than one S11 dip below -10 dB level.The principle of the matching circuit is analyzed and the critical factors with significant effect on the input impedance(Zin) are determined.The relationship between the input impedance and the load configuration is explored in depth,which is seldom concentrated upon previously. In addition,the noise of the input stage is modeled using a cascading matrix instead of conventional noise theory. In this way Zin and the noise figure can be calculated using one uniform formula.The linearity analysis is also performed in this paper.Finally,an LNA was designed for demonstration purposes.The measurement results show that the proposed LNA achieves a maximum power gain of 9.7 dB and an input return loss of < -10 dB from 29 GHz to an elevated frequency limited by the measuring range.The measured input-referred compression point and the third order inter-modulation point are -7.8 and 5.8 dBm,respectively.The LNA is fabricated in a 90-nm RF CMOS process and occupies an area of 755×670μm2 including pads.The whole circuit dissipates a DC power of 24 mW from one 1.3-V supply.
引用
收藏
页码:112 / 117
页数:6
相关论文
共 50 条
  • [1] A 31.7-GHz high linearity millimeter-wave CMOS LNA using an ultra-wideband input matching technique
    杨格亮
    王志功
    李智群
    李芹
    李竹
    刘法恩
    Journal of Semiconductors, 2012, (12) : 112 - 117
  • [2] A 31.7-GHz high linearity millimeter-wave CMOS LNA using an ultra-wideband input matching technique
    Yang Geliang
    Wang Zhigong
    Li Zhiqun
    Li Qin
    Li Zhu
    Liu Faen
    JOURNAL OF SEMICONDUCTORS, 2012, 33 (12)
  • [3] 6-10 GHz ultra-wideband CMOS LNA
    Battista, M.
    Gaubert, J.
    Egels, A.
    Bourdel, S.
    Barthelemy, H.
    ELECTRONICS LETTERS, 2008, 44 (05) : 343 - 344
  • [4] Ultra-Wideband Millimeter-Wave Bowtie Antenna
    Moghaddam, Sadegh Mansouri
    Yang, Jian
    Glazunov, Andres Alayon
    2017 INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION (ISAP 2017), 2017,
  • [5] An Ultra-Wideband Millimeter-Wave Phased Array
    Novak, Markus H.
    Miranda, Felix A.
    Volakis, John L.
    2016 10TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP), 2016,
  • [6] A millimeter-wave ultra-wideband triplexer with high isolation and high power
    Li, Dong
    Wei, Zhouyang
    Wang, Maoyan
    Hong, Zhenyu
    Wei, Boqi
    Lin, Juntao
    Sun, Lijie
    Xu, Jun
    Zhang, Xiaochuan
    INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2024, 37 (05)
  • [7] Millimeter-wave ultra-wideband PCB 180◦ hybrid for 12–67 GHz
    Pfeiffer C.
    Steffen T.
    Tomasic B.
    Progress In Electromagnetics Research M, 2020, 92 : 213 - 221
  • [8] CMOS LNA for full-band ultra-wideband systems using a simple wide input matching network
    Lee, J. Y.
    Ham, J. H.
    Lee, Y. S.
    Yun, T. Y.
    IET MICROWAVES ANTENNAS & PROPAGATION, 2010, 4 (12) : 2155 - 2159
  • [9] Low Cost Ultra-Wideband Millimeter-Wave Array
    Novak, Markus H.
    Volakis, John L.
    Miranda, Felix A.
    2016 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, 2016, : 1841 - 1842
  • [10] Ultra-wideband millimeter-wave tapered slot antennas
    Woo, Dong-Sik
    Kim, Young-Gon
    Kim, Kang Wook
    Cho, Young-Ki
    2007 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, VOLS 1-12, 2007, : 1811 - 1814