东海近岸大气中的210Po、210Bi和210Pb及其沉降入海通量评估

被引:0
|
作者
马瑞阳 [1 ,2 ]
钟强强 [2 ,3 ]
王浩 [1 ,2 ]
杜娟 [4 ]
刘文靖 [2 ]
张洁然 [2 ]
黄德坤 [2 ]
于涛 [2 ]
机构
[1] 上海海洋大学海洋科学学院
[2] 自然资源部第三海洋研究所
[3] 华东师范大学河口海岸学国家重点实验室
[4] 东莞理工学院生态环境工程技术研发中心
关键词
东海近岸; 210Po; 210Bi; 210Pb; 滞留时间; 沉降入海通量;
D O I
暂无
中图分类号
P734 [海洋化学];
学科分类号
070702 ;
摘要
大气210Po、210Bi和210Pb的沉降通量是海洋中核素示踪颗粒物动力学过程(颗粒有机碳输出、颗粒物输运)的基础参数,为揭示我国近海地区210Po、210Bi和210Pb活度浓度的时空变化规律并估算其沉降入海通量,本文于2016年9月至翌年2月和2021年9-11月分别对上海及厦门地区近地表大气气溶胶中210Po、210Pb和210Bi的活度浓度进行了连续观测;基于210Po-210Pb活度比(210Po/210Pb)和210Bi-210Pb活度比(210Bi/210Pb)两种示踪法计算了气溶胶颗粒物的滞留时间,并利用一维简单气溶胶沉降速率模型估算了3种核素以大气沉降方式输入东海的通量。结果显示,2016年上海秋、冬两季210Po、210Bi、210Pb 3种核素活度浓度的变化范围分别为0.11~1.27 m Bq/m3、0.45~1.83 m Bq/m3和1.12~6.10 m Bq/m3;2021年秋季厦门210Po、210Bi、210Pb 3种核素活度浓度的变化范围分别为0.05~0.85 m Bq/m3、0.83~2.52 m Bq/m3和0.17~1.32 m Bq/m3,上海近地表气溶胶中3种核素的活度浓度秋季平均值比厦门地区高。利用210Po/210Pb和210Bi/210Pb计算得到上海和厦门近地面大气的气溶胶滞留时间存在显著差异,基于210Po/210Pb计算上海气溶胶滞留时间均值为(94±54)d,基于210Bi/210Pb计算上海气溶胶滞留时间均值为(6.4±4.8)d,造成这种差异的原因很可能是两种示踪法本身具有的系统性差异。本文基于一维简易气溶胶沉降速率模型估算了上海地区的210Pb、210Bi和210Po的大气沉降入东海的通量,其在秋季期间的变化范围分别为0.1~26.35 Bq/(m2·d)、0.04~7.91 Bq/(m2·d)和0.01~5.49 Bq/(m2·d)。基于模型估算的210Po、210Bi和210Pb沉降通量与研究区域的实际观测值接近一致,表明利用一维简易气溶胶沉降速率模型间接估算法在替代观测站直测核素的沉降入海通量方面具有一定可行性。
引用
收藏
页码:118 / 128
页数:11
相关论文
共 37 条
  • [1] 210Pb and 7Be as Coupled Flux and Source Tracers for Aerosols in the Pacific Ocean
    Wei, Ziran
    Cochran, J. Kirk
    Horowitz, Evan
    Fitzgerald, Patrick
    Heilbrun, Christina
    Kadko, David
    Stephens, Mark
    Marsay, Chris M.
    Buck, Clifton S.
    Landing, William M.
    [J]. GLOBAL BIOGEOCHEMICAL CYCLES, 2022, 36 (08)
  • [2] A global dataset of atmospheric <sup>7</sup>Be and <sup>210</sup>Pb measurements: annual air concentration and depositional flux.[J].Zhang Fule;Wang Jinlong;Baskaran Mark;Zhong Qiangqiang;Wang Yali;Paatero Jussi;Du Jinzhou.Earth System Science Data.2021, 6
  • [3] Correlations between <sup>7</sup>Be; <sup>210</sup>Pb; dust and PM10 concentrations in relation to meteorological conditions in northern Poland in 1998-2018..[J].Zalewska Tamara;Biernacik Dawid;Marosz Michał.Journal of environmental radioactivity.2020,
  • [4] Analysis of 210 Po; 210 Bi; and 210 Pb in atmospheric and oceanic samples by simultaneously auto-plating 210 Po and 210 Bi onto a nickel disc.[J].Qiangqiang Zhong;Viena Puigcorbé;Christian Sanders;Jinzhou Du.Journal of Environmental Radioactivity.2020,
  • [5] Exploring New Frontiers in Marine Radioisotope Tracing – Adapting to New Opportunities and Challenges.[J].Tom Cresswell;Marc Metian;Nicholas S. Fisher;Sabine Charmasson;Roberta L. Hansman;Wokil Bam;Christian Bock;Peter Wolfgang Swarzenski.Frontiers in Marine Science.2020,
  • [6] Temporal variation of 210Pb concentration in the urban aerosols of Shanghai, China
    Deng, Binbin
    Zhong, Qiangqiang
    Wang, Qiugui
    Du, Jinzhou
    Zhang, Xiaocheng
    [J]. JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 2020, 323 (03) : 1135 - 1143
  • [7] 210 Po and 210 Pb distributions during a phytoplankton bloom in the North Atlantic: Implications for POC export.[J].Evan J. Horowitz;J. Kirk Cochran;Michael P. Bacon;David J. Hirschberg.Deep-Sea Research Part I.2020, prepublish
  • [8] POC export fluxes in the Arabian Sea and the Bay of Bengal: A simultaneous 234 Th/ 238 U and 210 Po/ 210 Pb study.[J].S. Subha Anand;R. Rengarajan;Damodar Shenoy;Mangesh Gauns;S.W.A. Naqvi.Marine Chemistry.2018,
  • [9] Scavenging and fractionation of particle-reactive radioisotopes 7Be; 210Pb and 210Po in the atmosphere.[J].Jinfang Chen;Shangde Luo;Yipu Huang.Geochimica et Cosmochimica Acta.2016,
  • [10] Atmospheric residence time of 210 Pb determined from the activity ratios with its daughter radionuclides 210 Bi and 210 Po.[J].P. Semertzidou;G.T. Piliposian;P.G. Appleby.Journal of Environmental Radioactivity.2016,