On the MacMahon generalization of the Newton-Girard formulae

被引:0
|
作者
Gegenbauer, L
机构
关键词
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
收藏
页码:347 / 351
页数:5
相关论文
共 50 条
  • [1] Generalized Power Sum and Newton-Girard Identities
    Sudip Bera
    Sajal Kumar Mukherjee
    [J]. Graphs and Combinatorics, 2020, 36 : 1957 - 1964
  • [2] Generalized Power Sum and Newton-Girard Identities
    Bera, Sudip
    Mukherjee, Sajal Kumar
    [J]. GRAPHS AND COMBINATORICS, 2020, 36 (06) : 1957 - 1964
  • [3] A GENERALIZED NEWTON-GIRARD FORMULA FOR MONOMIAL SYMMETRIC POLYNOMIALS
    Chamberlin, Samuel
    Rafizadeh, Azadeh
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2020, 50 (03) : 941 - 946
  • [4] Combinatorial proofs of the Newton-Girard and Chapman-Costas-Santos identities
    Mukherjee, Sajal Kumar
    Bera, Sudip
    [J]. DISCRETE MATHEMATICS, 2019, 342 (06) : 1577 - 1580
  • [5] Analogues of Newton-Girard power-sum formulas for entire and meromorphic functions with applications to the Riemann zeta function
    Bagdasaryan, Armen
    Araci, Serkan
    Acikgoz, Mehmet
    Srivastava, H. M.
    [J]. JOURNAL OF NUMBER THEORY, 2015, 147 : 92 - 102
  • [6] A GENERALIZATION OF MACMAHON'S FORMULA
    Vuletic, Mirjana
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (05) : 2789 - 2804
  • [7] A GENERALIZATION OF THE GORDON AND MACMAHON FORMULAS
    DESARMENIEN, J
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1989, 309 (06): : 269 - 272
  • [8] The vertex operator for a generalization of MacMahon's formula
    Cai, Liqiang
    Wang, Lifang
    Wu, Ke
    Yang, Jie
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2015, 30 (30):
  • [9] A GENERALIZATION OF STEINER FORMULAE
    ABASCAL, EV
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1947, 53 (08): : 841 - 844
  • [10] A generalization of addition formulae
    Janusz Brzdęk
    [J]. Acta Mathematica Hungarica, 2003, 101 : 281 - 291