REDUCTION OF A 2-DIMENSIONAL DIFFRACTION PROBLEM ON BODIES OF ARBITRARY SHAPE TO 1-DIMENSIONAL INTEGRAL EQUATIONS OF SECOND KIND

被引:0
|
作者
SIVOV, AN
机构
来源
关键词
D O I
暂无
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
引用
收藏
页码:1296 / &
相关论文
共 50 条
  • [1] SHAPE OF CRACK - 1-DIMENSIONAL CRACK IN 2-DIMENSIONAL SPACE
    ITAGAKI, K
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (03): : 253 - 253
  • [2] Classical solutions for 1-dimensional and 2-dimensional Boussinesq equations
    Georgiev, Svetlin
    Boukarou, Aissa
    Zennir, Khaled
    TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (07) : 2977 - 2997
  • [3] MODELING COMPLEXLY MAGNETIZED 2-DIMENSIONAL BODIES OF ARBITRARY SHAPE
    MARIANO, J
    HINZE, WJ
    GEOPHYSICS, 1993, 58 (05) : 637 - 644
  • [5] AN ANALYSIS OF TWO DIMENSIONAL INTEGRAL EQUATIONS OF THE SECOND KIND
    El-Borai, M. M.
    Abdou, M. A.
    Basseem, M.
    MATEMATICHE, 2007, 62 (01): : 15 - 39
  • [6] 1-DIMENSIONAL 2-DIMENSIONAL AND 3-DIMENSIONAL CRANKING
    BENGTSSON, R
    NUCLEAR PHYSICS A, 1993, 557 : C277 - C289
  • [7] Measurement of the second order optical nonlinearity of 1-dimensional and 2-dimensional organic molecules
    Meshulam, G
    Berkovic, G
    Kotler, Z
    Ben-Asuly, A
    Mazor, R
    Shapiro, L
    Khodorkovsky, V
    ELECTRO-OPTICS AND MICROELECTRONICS, PROCEEDINGS, 2000, 14 : 71 - 74
  • [8] ON SOLUTIONS OF THE 1ST-KIND VOLTERRA NONLINEAR 2-DIMENSIONAL INTEGRAL-EQUATIONS
    IMANALIYEV, MI
    ASANOV, A
    DOKLADY AKADEMII NAUK SSSR, 1991, 317 (01): : 32 - 35
  • [9] HYDRAULIC ANALOGY FOR 2-DIMENSIONAL AND 1-DIMENSIONAL FLOWS
    LOH, WHT
    JOURNAL OF THE AEROSPACE SCIENCES, 1959, 26 (06): : 389 - 391
  • [10] 2-DIMENSIONAL DIFFRACTION PROBLEM ON A POLYGON
    BOROVIKOV, VA
    DOKLADY AKADEMII NAUK SSSR, 1962, 144 (04): : 743 - &