A LABELLED SEQUENT CALCULUS FOR HALF-ORDER MODAL LOGIC

被引:0
|
作者
Alonderis, Romas [1 ]
Sakauskaite, Jurate [1 ]
机构
[1] Vilnius Univ, Inst Data Sci & Digital Technol, Akad 4, LT-2600 Vilnius, Lithuania
关键词
half-order modal logic; sequent calculus; admissibility of cut and structural rules; decidability;
D O I
暂无
中图分类号
B81 [逻辑学(论理学)];
学科分类号
010104 ; 010105 ;
摘要
We introduce the labelled Gentzen-type structural rules and cut-free sequent calculus GHOML for the half-order modal logic without function symbols and prove that the calculus is sound and complete for the logic. Using syntactic methods, we prove that the structural and cut rules are admissible in GHOML. The obtained calculus enables us to present a decision procedure for the half-order modal logic considered.
引用
收藏
页码:121 / 163
页数:43
相关论文
共 50 条
  • [1] A labelled sequent calculus for half-order modal logic
    Alonderis, Romas
    Sakauskaitė, Jūratė
    Journal of Applied Logics, 2018, 5 (01): : 121 - 164
  • [2] Labelled Sequent Calculus for Inquisitive Logic
    Chen, Jinsheng
    Ma, Minghui
    LOGIC, RATIONALITY, AND INTERACTION, LORI 2017, 2017, 10455 : 526 - 540
  • [3] A SEQUENT CALCULUS FOR THE MODAL LOGIC OF PROVABILITY
    VALENTINI, S
    JOURNAL OF SYMBOLIC LOGIC, 1984, 49 (02) : 707 - 708
  • [4] A labelled sequent-calculus for observation logic
    Brunet, O
    AUTOMATED REASONING WITH ANALYTIC TABLEAUX AND RELATED METHODS, PROCEEDINGS, 2003, 2796 : 17 - 31
  • [5] THE SEQUENT CALCULUS FOR THE MODAL LOGIC-D
    VALENTINI, S
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1993, 7A (03): : 455 - 460
  • [6] A Labelled Sequent Calculus for Intuitionistic Public Announcement Logic
    Nomura, Shoshin
    Sano, Katsuhiko
    Tojo, Satoshi
    LOGIC FOR PROGRAMMING, ARTIFICIAL INTELLIGENCE, AND REASONING, (LPAR-20 2015), 2015, 9450 : 187 - 202
  • [7] Revising a Labelled Sequent Calculus for Public Announcement Logic
    Nomura, Shoshin
    Sano, Katsuhiko
    Tojo, Satoshi
    STRUCTURAL ANALYSIS OF NON-CLASSICAL LOGICS, 2016, : 131 - 157
  • [8] Nested-sequent Calculus for Modal Logic MB
    Kawano, Tomoaki
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2024, (415):
  • [9] A multi-labelled sequent calculus for Topo-Logic
    Shillito, Ian
    JOURNAL OF LOGIC AND COMPUTATION, 2020, 30 (02) : 663 - 696
  • [10] A Sequent Calculus for First-Order Logic
    Braselmann, Patrick
    Koepke, Peter
    FORMALIZED MATHEMATICS, 2005, 13 (01): : 33 - 39