A STUDY OF THE N=2 KAZAKOV-MIGDAL MODEL

被引:0
|
作者
GOCKSCH, A [1 ]
机构
[1] BROOKHAVEN NATL LAB, DEPT PHYS, UPTON, NY 11973 USA
关键词
D O I
10.1016/0920-5632(93)90330-9
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We present a numerical study of the SU(2) Kazakov-Migdal model ('induced QCD'). We show that the model has a line of first order phase transitions terminating in a critical point. The adjoint plaquette has a clear discontinuity across the phase transition, whereas the plaquette in the fundamental representation is always zero in accordance with Elitzur's theorem. The density of small Z2 monopoles shows very little variation and is always large. We also find that the model has extra local U(1) symmetries which do not exist in the case of the standard adjoint theory. The relevance of these and other findings for the possibility of 'inducing' QCD is discussed.
引用
收藏
页码:804 / 807
页数:4
相关论文
共 50 条
  • [1] STUDY OF THE N = 2 KAZAKOV-MIGDAL MODEL
    AOKI, S
    GOCKSCH, A
    SHEN, Y
    PHYSICAL REVIEW D, 1993, 47 (04) : 1645 - 1651
  • [2] CORRELATORS OF THE KAZAKOV-MIGDAL MODEL
    DOBROLIUBOV, MI
    MAKEENKO, Y
    SEMENOFF, GW
    MODERN PHYSICS LETTERS A, 1993, 8 (25) : 2387 - 2401
  • [3] THE SPECTRUM OF THE KAZAKOV-MIGDAL MODEL
    AOKI, S
    GOCKSCH, A
    NUCLEAR PHYSICS B, 1993, 404 (1-2) : 173 - 186
  • [4] PHASE-DIAGRAM OF THE N = 2 KAZAKOV-MIGDAL MODEL
    GOCKSCH, A
    SHEN, Y
    PHYSICAL REVIEW LETTERS, 1992, 69 (19) : 2747 - 2749
  • [5] SPATIAL DYNAMICS IN THE KAZAKOV-MIGDAL MODEL
    ZAREMBO, K
    PHYSICS LETTERS B, 1994, 321 (03) : 234 - 238
  • [6] LARGE-N QUENCHING IN THE KAZAKOV-MIGDAL MODEL
    AREFEVA, IY
    PHYSICS LETTERS B, 1993, 308 (3-4) : 340 - 346
  • [7] EVALUATION OF OBSERVABLES IN THE GAUSSIAN N=INFINITY KAZAKOV-MIGDAL MODEL
    DOBROLIUBOV, MI
    SEMENOFF, GW
    WEISS, N
    MOROZOV, A
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1994, 9 (29): : 5033 - 5051
  • [8] Phases and Duality in the Fundamental Kazakov-Migdal Model on the Graph
    Matsuura, So
    Ohta, Kazutoshi
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2024, 2024 (08):
  • [9] Kazakov-Migdal model on the graph and Ihara zeta function
    So Matsuura
    Kazutoshi Ohta
    Journal of High Energy Physics, 2022
  • [10] Kazakov-Migdal model on the graph and Ihara zeta function
    Matsuura, So
    Ohta, Kazutoshi
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (09)