ALMOST EVERYWHERE SUMMABILITY OF LAGUERRE SERIES

被引:44
|
作者
STEMPAK, K
机构
关键词
LAGUERRE EXPANSIONS; GENERALIZED TWISTED CONVOLUTION; RIESZ; CESARO AND ABEL-POISSON MEANS;
D O I
10.4064/sm-100-2-129-147
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We apply a construction of generalized twisted convolution to investigate almost everywhere summability of expansions with respect to the orthonormal system of functions l(n)a(x) = (n!/GAMMA(n + a + 1))1/2e(-x/2)L(n)a(x), n = 0, 1, 2,..., in L2(R+, x(a)dx), a greater-than-or-equal-to 0. We prove that the Cesaro means of order delta > a+2/3 of any function f is-an-element-of L(p)(x(a)dx), 1 less-than-or-equal-to p less-than-or-equal-to infinity, converge to f a.e. The main tool we use is a Hardy-Littlewood type maximal operator associated with a generalized Euclidean convolution.
引用
收藏
页码:129 / 147
页数:19
相关论文
共 50 条