NONLINEAR IMPULSIVE PERIODIC EVOLUTION EQUATIONS

被引:0
|
作者
Sattayatham, P. [1 ]
机构
[1] Suranaree Univ Technol, Dept Math, 111 Univ Ave, Nakhon Ratchasima, Thailand
关键词
nonlinear impulsive evolution equations; nonlinear monotone operator; evolution triple;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the question of the existence of periodic solutions of nonlinear impulsive differential equations monitored by the strongly nonlinear evolution equations (x)over dot(t) + A(t, x(t)) = g(t, x(t)), 0 < t < T. Here, V hooked right arrow H hooked right arrow V* is an evolution triple, A : I x V -> V* is a uniformly monotone operator and g : I x H -> V* is a Caratheodary mapping.
引用
收藏
页码:61 / 74
页数:14
相关论文
共 50 条
  • [1] Nonlinear impulsive evolution equations
    Liu, JH
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS, 1999, 6 (01): : 77 - 85
  • [2] Periodic boundary value problems for nonlinear impulsive evolution equations on Banach spaces
    Yu, Xiulan
    Wang, JinRong
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 22 (1-3) : 980 - 989
  • [3] (ω, T)-PERIODIC SOLUTIONS OF IMPULSIVE EVOLUTION EQUATIONS
    Feckan, M. I. C. H. A. L.
    Liu, K. U., I
    Wang, J. I. N. R. O. N. G.
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2022, 11 (02): : 415 - 437
  • [4] GLOBAL ASYMPTOTIC STABILITY OF NONLINEAR PERIODIC IMPULSIVE EQUATIONS
    Slyn'ko, V. I.
    Tunc, Cemil
    MISKOLC MATHEMATICAL NOTES, 2018, 19 (01) : 595 - 610
  • [5] The existence of solutions for nonlinear impulsive evolution equations
    Zhang, LL
    Wang, WX
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2006, 13 : 593 - 600
  • [6] Periodic BVPs for fractional order impulsive evolution equations
    Xiulan Yu
    JinRong Wang
    Boundary Value Problems, 2014
  • [7] Periodic BVPs for fractional order impulsive evolution equations
    Yu, Xiulan
    Wang, JinRong
    BOUNDARY VALUE PROBLEMS, 2014,
  • [8] Periodic mild solutions of impulsive fractional evolution equations
    Ren, Lulu
    Wang, Jinrong
    Feckan, Michal
    AIMS MATHEMATICS, 2020, 5 (01): : 497 - 506
  • [9] Periodic solutions for nonlinear evolution equations
    Chen, YQ
    Cho, YJ
    Yang, L
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2002, 9 (04): : 581 - 598
  • [10] On positive periodic solutions of nonlinear impulsive functional differential equations
    Kocherha, O. I.
    Nenya, O. I.
    Tkachenko, V. I.
    NONLINEAR OSCILLATIONS, 2008, 11 (04): : 527 - 538