DIFFERENTIAL LINEARIZATION OF SINGULAR GERMS OF R2 ACTIONS AND OF HOLOMORPH VECTOR FIELDS

被引:0
|
作者
DUMORTIER, F
ROUSSARIE, R
机构
[1] VRIJE UNIV BRUSSEL,DEPT WISKUNDE,B-1050 BRUSSELS,BELGIUM
[2] UNIV DIJON,DEPT MATH,UER,MIPC,F-21000 DIJON,FRANCE
关键词
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
收藏
页码:841 / 844
页数:4
相关论文
共 50 条
  • [1] Linearization of germs of hyperbolic vector fields
    Bonckaert, P
    Naudot, V
    Yang, JZ
    [J]. COMPTES RENDUS MATHEMATIQUE, 2003, 336 (01) : 19 - 22
  • [2] Linearization of families of germs of hyperbolic vector fields
    Naudot, Vincent
    Yang, Jiazhong
    [J]. DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2008, 23 (04): : 467 - 489
  • [3] Generic complex vector fields in R2
    Le, Anbo
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) : 11 - 19
  • [4] Vector fields in R2 with maximal index
    Nabarro, A. C.
    Ruas, M. A. S.
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 2007, 58 : 81 - 90
  • [5] Bounded polynomial vector fields in R2 and Rn
    Barreira, Luis
    Llibre, Jaume
    Valls, Claudia
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (08) : 4416 - 4422
  • [6] Quasi-linearization of parameter-depending germs of vector fields
    Naudot, Vincent
    Yang, Jiazhong
    [J]. DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2013, 28 (02): : 173 - 186
  • [7] Structurally stable singular actions of R2 having a first integral
    Arraut, J. L.
    Maquera, Carlos
    [J]. FOLIATIONS, GEOMETRY, AND TOPOLOGY: PAUL SCHWEITZER FESTSCHRIFT, 2009, 498 : 127 - 134
  • [8] Injectivity of C1 maps R2→R2 at infinity and planar vector fields
    Gutierrez, C
    Sarmiento, A
    [J]. ASTERISQUE, 2003, (287) : 89 - 102
  • [9] Global asymptotic stability for differentiable vector fields of R2
    Fernandes, A
    Gutierrez, C
    Rabanal, R
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 206 (02) : 470 - 482
  • [10] Lowering the dimension of polynomial vector fields in R2 and R3
    Yanguas, P
    [J]. CHAOS, 2001, 11 (02) : 306 - 318