A comparative study of battery state-of-health estimation based on empirical mode decomposition and neural network

被引:0
|
作者
Li, Kaiquan [1 ]
Wang, Yujie [1 ]
Chen, Zonghai [1 ]
机构
[1] Univ Sci & Technol China, Dept Automat, Hefei 230027, Peoples R China
关键词
Lithium-ion battery; State of health; Capacity regeneration; Empirical mode decomposition; Neural network; Hyperband optimization;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Accurate estimation of state of health (SOH) in the battery management system furnishes powerful support for ensuring safe and reliable operation of lithium-ion batteries. Data-based neural networks have progressively developed into the most representative solution of SOH estimation. This paper systematically compares three typical neural networks and variants on the accuracy and robustness. Moreover, empirical mode decomposition is firstly adopted to withdraw efficacious health indicators from measurement data acquired during constant current and constant voltage charging. Secondly, Pearson correlation coefficient is applied to elect features with strong characterization from constant-current phase duration, constant-voltage phase duration, constant -current phase time proportion, constant-voltage phase time proportion, and total charge time. Finally, several neural network models such as simple recurrent neural networks, long and short-term memory neural networks (LSTM), gated recurrent units and opposite bidirectional structure are built and compared. Considering the universality and fairness of the results, the novel hyperband optimization seeks optimal configuration for deep learning models through dynamic resource allocation based on the early-stopping strategy and Successive Halving algorithm. Experimental results indicate that LSTM and bidirectional LSTM have higher charge-discharge conditions insensitivity and precision in battery SOH.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] A comparative study of battery state-of-health estimation based on empirical mode decomposition and neural network
    Li, Kaiquan
    Wang, Yujie
    Chen, Zonghai
    JOURNAL OF ENERGY STORAGE, 2022, 54
  • [2] A neural network based state-of-health estimation of lithium-ion battery in electric vehicles
    Yang, Duo
    Wang, Yujie
    Pan, Rui
    Chen, Ruiyang
    Chen, Zonghai
    8TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY (ICAE2016), 2017, 105 : 2059 - 2064
  • [3] Lithium Battery State-of-Health Estimation Based on Sample Data Generation and Temporal Convolutional Neural Network
    Guo, Fang
    Huang, Guangshan
    Zhang, Wencan
    Wen, An
    Li, Taotao
    He, Hancheng
    Huang, Haolin
    Zhu, Shanshan
    ENERGIES, 2023, 16 (24)
  • [4] State-of-health estimation of lithium-ion battery based on convolutional neural network considering health indicator extraction
    Mun T.-S.
    Han D.-H.
    Kwon S.-U.
    Baek J.-B.
    Kim J.-H.
    Transactions of the Korean Institute of Electrical Engineers, 2021, 70 (10): : 1467 - 1474
  • [5] Online State-of-Health Estimation for the Lithium-Ion Battery Based on An LSTM Neural Network with Attention Mechanism
    Zhang, Jiachang
    Hou, Jie
    Zhang, Zijian
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 1334 - 1339
  • [6] A New Hybrid Neural Network Method for State-of-Health Estimation of Lithium-Ion Battery
    Bao, Zhengyi
    Jiang, Jiahao
    Zhu, Chunxiang
    Gao, Mingyu
    ENERGIES, 2022, 15 (12)
  • [7] A feature fusion-based convolutional neural network for battery state-of-health estimation with mining of partial voltage curve
    Lu, Zhenfeng
    Fei, Zicheng
    Wang, Benfei
    Yang, Fangfang
    ENERGY, 2024, 288
  • [8] Online State-of-Health Estimation of Lithium-Ion Battery Based on Incremental Capacity Curve and BP Neural Network
    Lin, Hongye
    Kang, Longyun
    Xie, Di
    Linghu, Jinqing
    Li, Jie
    BATTERIES-BASEL, 2022, 8 (04):
  • [9] A hybrid neural network based on variational mode decomposition denoising for predicting state-of-health of lithium-ion batteries
    Yuan, Zifan
    Tian, Tian
    Hao, Fuchong
    Li, Gen
    Tang, Rong
    Liu, Xueqin
    JOURNAL OF POWER SOURCES, 2024, 609
  • [10] Battery State-of-Health Estimation for Mobile Devices
    He, Liang
    Kim, Eugene
    Shin, Kang G.
    Meng, Guozhu
    He, Tian
    2017 ACM/IEEE 8TH INTERNATIONAL CONFERENCE ON CYBER-PHYSICAL SYSTEMS (ICCPS), 2017, : 51 - 60