THE INTERPOLATION PROBLEM FOR K-SPARSE POLYNOMIALS AND CHARACTER SUMS

被引:9
|
作者
DRESS, A [1 ]
GRABMEIER, J [1 ]
机构
[1] IBM DEUTSCHLAND GMBH,WISSENSCHAFTLICHES ZENTRUM HEIDELBERG,HEIDELBERG,GERMANY
关键词
D O I
10.1016/0196-8858(91)90004-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated by a remarkable result of D. Y. Grigoriev and M. Karpinski, the interpolation problem for k-sparse multivariate polynomials has received some attention in recent years. In this note we want to show that essentially all of the results obtained so far hold more generally for k-sparse sums of characters of abelian monoids, thereby providing a useful unified approach to this active field of research. As it turns out, there are basically two different situations, in the first one reduction to the (rather trivial) case of cyclic monoids is possible, in the general case we can handle direct products of abelian monoids by using informations about the factors. Basic ingredients of these approaches are the construction of distinction sets for characters and zero-test sets for k-sparse character sums. © 1991.
引用
收藏
页码:57 / 75
页数:19
相关论文
共 50 条
  • [1] THE INTERPOLATION PROBLEM FOR K-SPARSE SUMS OF EIGENFUNCTIONS OF OPERATORS
    GRIGORIEV, DY
    KARPINSKI, M
    SINGER, MF
    ADVANCES IN APPLIED MATHEMATICS, 1991, 12 (01) : 76 - 81
  • [2] ON ZERO-TESTING AND INTERPOLATION OF K-SPARSE MULTIVARIATE POLYNOMIALS OVER FINITE-FIELDS
    CLAUSEN, M
    DRESS, A
    GRABMEIER, J
    KARPINSKI, M
    THEORETICAL COMPUTER SCIENCE, 1991, 84 (02) : 151 - 164
  • [3] Solving the k-Sparse Eigenvalue Problem with Reinforcement Learning
    Zhou, Li
    Yan, Lihao
    Caprio, Mark A.
    Gao, Weiguo
    Yang, Chao
    CSIAM TRANSACTIONS ON APPLIED MATHEMATICS, 2021, 2 (04): : 697 - 723
  • [4] k-Sparse extreme learning machine
    Raza, N.
    Tahir, M.
    Ali, K.
    ELECTRONICS LETTERS, 2020, 56 (23) : 1277 - 1279
  • [5] SOME CHARACTER SUMS OF THE POLYNOMIALS
    Zhang, Wenpeng
    Zhang, Jiafan
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2020, 48 (01): : 37 - 48
  • [6] Character Sums with Division Polynomials
    Shparlinski, Igor E.
    Stange, Katherine E.
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2012, 55 (04): : 850 - 857
  • [7] Object Completion using k-Sparse Optimization
    Mavridis, P.
    Sipiran, I.
    Andreadis, A.
    Papaioannou, G.
    COMPUTER GRAPHICS FORUM, 2015, 34 (07) : 13 - 21
  • [8] Sparse interpolation of symmetric polynomials
    Barvinok, A
    Fomin, S
    ADVANCES IN APPLIED MATHEMATICS, 1997, 18 (03) : 271 - 285
  • [9] CUBIC CHARACTER SUMS OF CUBIC POLYNOMIALS
    WRIGHT, DJ
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 100 (03) : 409 - 413
  • [10] CHARACTER SUMS OF POLYNOMIALS TO A PRIME MODULUS
    GILLETT, JR
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1973, 27 (SEP) : 205 - 221