Finite Type Invariants and the Kauffman Bracket Polynomials of Virtual Knots

被引:1
|
作者
Jeong, Myeong-Ju [1 ]
Park, Chan-Young [2 ]
Yeo, Soon Tae [3 ]
机构
[1] Korea Adv Inst Sci & Technol, Korea Sci Acad, Dept Math & Comp Sci, Busan 614822, South Korea
[2] Kyungpook Natl Univ, Dept Math, Taegu 702701, South Korea
[3] Busan Natl Univ, Dept Math, Busan 609735, South Korea
来源
KYUNGPOOK MATHEMATICAL JOURNAL | 2014年 / 54卷 / 04期
关键词
virtual knots; graphical finite type invariants; finite type invariants of virtual knots;
D O I
10.5666/KMJ.2014.54.4.639
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In [9], Kauffman introduced virtual knot theory and generalized many classical knot invariants to virtual ones. For example, he extended the Jones polynomials V-K (t) of classical links to the f-polynomials f(K) (A) of virtual links by using bracket polynomials. In [4], M. Goussarov, M. Polyak and O. Viro introduced finite type invariants of virtual knots. In this paper, we give a necessary condition for a virtual knot invariant to be of finite type by using t(a(1), . . . , a(m)) sequences of virtual knots. Then we show that the higher derivatives f(K)((n)) (a) of the f-polynomial f(K) (A) of a virtual knot K at any point a are not of finite type unless n < 1 and a = 1.
引用
收藏
页码:639 / 653
页数:15
相关论文
共 50 条