TOPOLOGICAL AND ORDER-TOPOLOGICAL ORTHOMODULAR LATTICES

被引:6
|
作者
RIECANOVA, Z [1 ]
机构
[1] SLOVAK UNIV TECHNOL BRATISLAVA, FAC ELECTROTECH, DEPT MATH, CS-81219 BRATISLAVA, CZECHOSLOVAKIA
关键词
D O I
10.1017/S0004972700012168
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The necessary and sufficient conditions for atomic orthomodular lattices to have the MacNeille completion modular, or (o)-continuous or order topological, orthomodular lattices are proved. Moreover we show that if in an orthomodular lattice the (o)-convergence of filters is topological then the (o)-convergence of nets need not be topological. Finally we show that even in the case when the MacNeille completion L of an orthomodular lattice L is order-topological, then in general the (o)-convergence of nets in L does not imply their (o)-convergence in L. (This disproves, also for the orthomodular and order-topological case, one statement in G.Birkhoff's book.)
引用
下载
收藏
页码:509 / 518
页数:10
相关论文
共 50 条