Detection of Outliers in Gene Expression Data Using Expressed Robust-t Test

被引:0
|
作者
Farazi, Md. Manzur Rahman [1 ]
Imon, A. H. M. Rahmatullah [2 ]
机构
[1] Marquette Univ, Dept Math Stat & Comp Sci, Milwaukee, WI 53201 USA
[2] Ball State Univ, Dept Math Sci, Muncie, IN 47306 USA
来源
关键词
Gene expression; Outlier; Cancer outlier profile; Robust statistics;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Detection of outliers in gene expression data has drawn a great deal of attention in recent years. Although a variety of outlier detection methods is available in the literature Tomlins et al. (2005) argued that they are not readily applicable to gene expression data. They developed the "cancer outlier profile analysis (COPA)" method to detect cancer genes and outliers. Following their way several methods are proposed in the literature for detecting outliers. Most of these methods are based on t -type tests which are basically nonrobust and hence fail to identify multiple outliers. In this paper we propose a robust version of the t -test that we call expressed robust t (ERT) test. The usefulness of the proposed methods is then investigated by Monte Carlo simulation and real cancer data.
引用
收藏
页码:117 / 135
页数:19
相关论文
共 50 条
  • [1] Outliers Effect in Measurement Data for T-peel Adhesion Test using Robust Parameter Design
    Dolah, Rozzeta
    Miyagi, Zenichi
    Bergman, Bo
    [J]. JURNAL TEKNOLOGI, 2014, 68 (04):
  • [2] Robust detection of multiple outliers in grouped multivariate data
    Caroni, Chrys
    Billor, Nedret
    [J]. JOURNAL OF APPLIED STATISTICS, 2007, 34 (10) : 1241 - 1250
  • [3] DETECTION OF OUTLIERS AND ROBUST ESTIMATION USING FUZZY CLUSTERING
    VANCUTSEM, B
    GATH, I
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1993, 15 (01) : 47 - 61
  • [4] A fuzzy approach for analyzing outliers in gene expression data
    Yousri, Noha A.
    Kamel, Mohamed S.
    Ismail, Mohamed A.
    [J]. BMEI 2008: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS, VOL 1, 2008, : 207 - +
  • [5] The generalized T2 test for biomarker identification using gene expression data
    Zhao, J
    Xiong, M
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2001, 69 (04) : 451 - 451
  • [6] Robust and sparse canonical correlation analysis for fault detection and diagnosis using training data with outliers
    Luo, Lijia
    Wang, Weida
    Bao, Shiyi
    Peng, Xin
    Peng, Yigong
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2024, 236
  • [7] Robust Detection of Periodic Patterns in Gene Expression Microarray Data using Topological Signal Analysis
    Emrani, Saba
    Krim, Hamid
    [J]. 2014 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2014, : 1406 - 1409
  • [8] Detection of outliers in multivariate data: A method based on clustering and robust estimators
    Santos-Pereira, CM
    Pires, AM
    [J]. COMPSTAT 2002: PROCEEDINGS IN COMPUTATIONAL STATISTICS, 2002, : 291 - 296
  • [9] Detection of outliers in data streams using grouping methods
    Duraj, Agnieszka
    Chomatek, Lukasz
    [J]. PRZEGLAD ELEKTROTECHNICZNY, 2019, 95 (02): : 85 - 87
  • [10] Outliers Detection Method Using Clustering in Buildings Data
    Habib, Usman
    Zucker, Gerhard
    Bloechle, Max
    Judex, Florian
    Haase, Jan
    [J]. IECON 2015 - 41ST ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2015, : 694 - 700