EXISTENCE OF A POSITIVE SOLUTION FOR A THIRD-ORDER THREE POINT BOUNDARY VALUE PROBLEM

被引:0
|
作者
Rezaiguia, Ali [1 ]
Kelaiaia, Smail [2 ]
机构
[1] Univ Souk Ahras, Fact Sci, Dept MI, Souk Ahras 41000, Algeria
[2] Univ Annaba, Dept Math, Fac Sci, POB12, Annaba, Algeria
来源
MATEMATICKI VESNIK | 2016年 / 68卷 / 01期
关键词
Third-order differential equations; three point boundary value problem; Krasnoselski fixed point in a cone; fixed point index theory;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By applying the Krasnoselskii fixed point theorem in cones and the fixed point index theory, we study the existence of positive solutions of the non linear third-order three point boundary value problem u'"(t) + a(t) f(t, u(t)) = 0, t is an element of (0, 1), u'(0) = u'(1) = alpha u(eta), u(01) = beta u(eta), where alpha, beta and eta are constants with alpha is an element of [0, 1/n), and 0 < eta < 1. The results obtained here generalize the work of Torres [Positive solution for a third-order three point boundary value problem, Electronic J. Diff. Equ. 2013 (2013), 147, 1-11].
引用
收藏
页码:12 / 25
页数:14
相关论文
共 50 条