PROJECTIVE SCHUR DIVISION-ALGEBRAS ARE ABELIAN CROSSED-PRODUCTS

被引:11
|
作者
ALJADEFF, E [1 ]
SONN, J [1 ]
机构
[1] UNIV INSTELLING ANTWERP,B-2610 WILRIJK,BELGIUM
关键词
D O I
10.1006/jabr.1994.1044
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k be a field. A projective Schur Algebra over k is a finite-dimensional k-central simple algebra which is a homomorphic image of a twisted group algebra k(alpha)G with G a finite group and alpha is-an-element-of H-2(G, k *). The main result of this paper is that every projective Schur division algebra is an abelian crossed product (K/k, f), where K is a radical extension of k. (C) 1994 Academic Press, Inc.
引用
收藏
页码:795 / 805
页数:11
相关论文
共 50 条