DISPERSION POPULATION-MODELS DISCRETE IN TIME AND CONTINUOUS IN SPACE

被引:38
|
作者
HARDIN, DP
TAKAC, P
WEBB, GF
机构
[1] Department of Mathematics, Vanderbilt University, Nashville, Tennessee
关键词
Dispersion; Integrodifference equation; Spectral radius;
D O I
10.1007/BF00171515
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We analyze a discrete-time model of populations that grow and disperse in separate phases. The growth phase is a nonlinear process that allows for the effects of local crowding. The dispersion phase is a linear process that distributes the population throughout its spatial habitat. Our study quantifies the issues of survival and extinction, the existence and stability of nontrivial steady states, and the comparison of various dispersion strategies. Our results show that all of these issues are tied to the global nature of various model parameters. The extreme strategies of staying-in place and going-everywhere-uniformly are compared numerically to diffusion strategies in various contexts. We approach the mathematical analysis of our model from a functional analysis and an operator theory point of view. We use recent results from the theory of positive operators in Banach lattices. © 1990, Springer-Verlag. All rights reserved.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条