VOLUME IGNITION OF INERTIAL CONFINEMENT FUSION OF DEUTERIUM HELIUM(3) AND HYDROGEN BORON(11) CLEAN FUSION FUEL

被引:14
|
作者
PIERUSCHKA, P
CICCHITELLI, L
KHODABAKHSH, R
KUHN, E
MILEY, GH
HORA, H
机构
[1] UNIV NEW S WALES,DEPT THEORET PHYS,KENSINGTON,NSW 2033,AUSTRALIA
[2] UNIV ILLINOIS,FUS STUDIES LAB,URBANA,IL 61801
关键词
D O I
10.1017/S0263034600004274
中图分类号
O59 [应用物理学];
学科分类号
摘要
Since DT laser fusion with 10-MJ laser pulses for 1000-MJ output now offers the physics solution for an economical fusion energy reactor, the conditions are evaluated assuming that controlled ICF reactions will become possible in the future using clean nuclear fusion fuel such as deuterium-helium(3) or hydrogen-boron(11). Using the transparent physics mechanisms of volume ignition of the fuel capsules, we show that the volume ignition for strong reduction of the optimum initial temperature can be reached for both types of fuels if a compression about 100 times higher than those in present-day laser compression experiments is attained in the future. Helium(3) laser-pulse energies are then in the same range as for DT, but ten times higher energies will be required for hydrogen-boron(11).
引用
收藏
页码:145 / 154
页数:10
相关论文
共 50 条
  • [1] Analysis of the retrograde hydrogen boron fusion gains at inertial confinement fusion with volume ignition
    Scheffel, C
    Stening, RJ
    Hora, H
    Hopfl, R
    Martinez-Val, JM
    Eliezer, S
    Kasotakis, G
    Piera, M
    Sarris, E
    LASER AND PARTICLE BEAMS, 1997, 15 (04) : 565 - 574
  • [2] Critical temperature for volume ignition of deuterium-tritium fuel in inertial confinement fusion: Effects of hydrodynamic instabilities
    Xu, Rui-Hua
    Wen, Wu
    Zhao, Ying-Kui
    PHYSICS OF PLASMAS, 2022, 29 (04)
  • [3] ADVANCED FUSION FUEL FOR INERTIAL CONFINEMENT FUSION
    KHODABAKHSH, R
    HORA, H
    MILEY, GH
    STENING, RJ
    PIERUSCHKA, P
    FUSION TECHNOLOGY, 1992, 22 (01): : 50 - 55
  • [4] Diagnosing inertial confinement fusion ignition
    Moore, A. S.
    Divol, L.
    Bachmann, B.
    Bionta, R.
    Bradley, D.
    Casey, D. T.
    Celliers, P.
    Chen, H.
    Do, A.
    Dewald, E.
    Eckart, M.
    Fittinghoff, D.
    Frenje, J.
    Gatu-Johnson, M.
    Geppert-Kleinrath, H.
    Geppert-Kleinrath, V.
    Grim, G.
    Hahn, K.
    Hohenberger, M.
    Holder, J.
    Hurricane, O.
    Izumi, N.
    Kerr, S.
    Khan, S. F.
    Kilkenny, J. D.
    Kim, Y.
    Kozioziemski, B.
    Lemos, N.
    MacPhee, A. G.
    Michel, P.
    Millot, M.
    Meaney, K. D.
    Nagel, S.
    Pak, A.
    Ralph, J. E.
    Ross, J. S.
    Rubery, M. S.
    Schlossberg, D. J.
    Smalyuk, V.
    Swadling, G.
    Tommasini, R.
    Trosseille, C.
    Zylstra, A. B.
    Mackinnon, A.
    Moody, J. D.
    Landen, O. L.
    Town, R.
    NUCLEAR FUSION, 2024, 64 (10)
  • [5] Ignition and Inertial Confinement Fusion at The National Ignition Facility
    Moses, Edward I.
    SIXTH INTERNATIONAL CONFERENCE ON INERTIAL FUSION SCIENCES AND APPLICATIONS, PARTS 1-4, 2010, 244
  • [6] Alternative ignition schemes in inertial confinement fusion
    Tabak, M.
    Norreys, P.
    Tikhonchuk, V. T.
    Tanaka, K. A.
    NUCLEAR FUSION, 2014, 54 (05)
  • [7] Fast ignition of inertial confinement fusion targets
    Gus'kov, S. Yu.
    PLASMA PHYSICS REPORTS, 2013, 39 (01) : 1 - 50
  • [8] Fast ignition schemes for inertial confinement fusion
    Deutsch, C
    EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2003, 24 (02): : 95 - 113
  • [9] Antiproton fast ignition for inertial confinement fusion
    Perkins, LJ
    FUSION TECHNOLOGY, 1999, 36 (02): : 219 - 233
  • [10] Fast ignition schemes for inertial confinement fusion
    Deutsch, C
    VIDE-SCIENCE TECHNIQUE ET APPLICATIONS, 2003, 57 (307): : 158 - +