ON NOETHER THEOREM FOR TIME-DEPENDENT OSCILLATORS - COMMENT

被引:1
|
作者
MOREIRA, IC
机构
来源
EUROPHYSICS LETTERS | 1990年 / 12卷 / 05期
关键词
D O I
10.1209/0295-5075/12/5/002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We comment a recent letter by Gu and Qian about the determination of invariants for time-dependent one-dimensional equations, via the Noether theorem. We show how an old and important result obtained by Tresse can be used for simplifying the identification of Noether symmetries and invariants. © 1990 IOP Publishing Ltd.
引用
收藏
页码:391 / 393
页数:3
相关论文
共 50 条
  • [1] NOETHER THEOREM AND TIME-DEPENDENT QUANTUM INVARIANTS
    CASTANOS, O
    LOPEZPENA, R
    MANKO, VI
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (05): : 1751 - 1770
  • [2] NOETHER THEOREM AND EXACT INVARIANTS FOR TIME-DEPENDENT SYSTEMS
    RAY, JR
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (06): : 1969 - 1975
  • [3] NOETHER THEOREM AND TIME-DEPENDENT HARMONIC-OSCILLATOR
    LUTZKY, M
    [J]. PHYSICS LETTERS A, 1978, 68 (01) : 3 - 4
  • [4] On Noether's theorem for the invariant of the time-dependent harmonic oscillator
    Abe, Sumiyoshi
    Itto, Yuichi
    Matsunaga, Mamoru
    [J]. EUROPEAN JOURNAL OF PHYSICS, 2009, 30 (06) : 1337 - 1343
  • [5] SYMMETRIES OF LINE BUNDLES AND NOETHER THEOREM FOR TIME-DEPENDENT NONHOLONOMIC SYSTEMS
    Jovanovic, Bozidar
    [J]. JOURNAL OF GEOMETRIC MECHANICS, 2018, 10 (02): : 173 - 187
  • [6] Noether's theorem and Lie symmetries for time-dependent Hamilton-Lagrange systems
    Struckmeier, J
    Riedel, C
    [J]. PHYSICAL REVIEW E, 2002, 66 (06) : 12 - 066605
  • [7] A GEOMETRIC APPROACH TO NOETHER 2ND THEOREM IN TIME-DEPENDENT LAGRANGIAN MECHANICS
    CARINENA, JF
    FERNANDEZNUNEZ, J
    MARTINEZ, E
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 1991, 23 (01) : 51 - 63
  • [8] TIME-DEPENDENT HARMONIC OSCILLATORS
    LANDOVITZ, LF
    LEVINE, AM
    SCHREIBER, WM
    [J]. PHYSICAL REVIEW A, 1979, 20 (03): : 1162 - 1168
  • [9] NOETHER THEOREM INVARIANTS FOR A TIME-DEPENDENT DAMPED HARMONIC-OSCILLATOR WITH A FORCE QUADRATIC IN VELOCITY
    GU, ZY
    QIAN, SW
    [J]. EUROPHYSICS LETTERS, 1989, 10 (07): : 615 - 619
  • [10] Time-dependent fluctuation theorem
    Mittag, E
    Evans, DJ
    [J]. PHYSICAL REVIEW E, 2003, 67 (02):