NUMERICAL-SIMULATION OF EVAPORATION, IGNITION AND COMBUSTION OF TRANSIENT SPRAYS

被引:10
|
作者
TAKAGI, T [1 ]
CHING, YF [1 ]
KAMIMOTO, T [1 ]
OKAMOTO, T [1 ]
机构
[1] TOKYO INST TECHNOL,FAC ENGN,DEPT MECH ENGN,TOKYO 152,JAPAN
关键词
TRANSIENT SPRAY; EVAPORATION; IGNITION; SPRAY COMBUSTION; NUMERICAL SIMULATION;
D O I
10.1080/00102209108924075
中图分类号
O414.1 [热力学];
学科分类号
摘要
Numerical simulations of transient sprays were made based on an Euleria.n gas and a Lagrangian drop formulation coupled with chemical reactions for the gas and for soot. Computed profiles of axial and radial velocity, species and soot concentration, gas temperature, local or total heat release rate are presented to understand the overall and the internal structure of the combusting spray. Some of the computed results are compared with experiments taken in a rapid compression machine. The results indicate the following. (I) The computations predict the ignition delay, the transient configuration of the spray flame and drop penetration distance reasonably well. (2) The drops evaporate in the early stage of the spray combustion and the drop penetration distance is predicted well by taking account of the secondary breakup of the drops in the evaporating sprays. The secondary breakup is liable to occur at high pressure and high temperature atmosphere. (3) Ignition occurs at a hot spot in the off-axis region and is followed by the rapid spread of the combustion and the fast release of heat. (4) A flame front is formed downstream from the nozzle exit. Near the flame front, the local heat release rate is very intense where premixed combustion occurs. Gaseous turbulent diffusion dominates combustion of the fuel in the core of spray. © 1991, Taylor & Francis Group, LLC. All rights reserved.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [1] Direct numerical simulation of sprays: Turbulent dispersion, evaporation and combustion
    Reveillon, Julien
    MULTIPHASE REACTING FLOWS: MODELLING AND SIMULATION, 2007, (492): : 229 - 269
  • [2] NUMERICAL-SIMULATION OF COMBUSTION
    MIYAUCHI, T
    TETSU TO HAGANE-JOURNAL OF THE IRON AND STEEL INSTITUTE OF JAPAN, 1994, 80 (12): : 871 - 877
  • [3] NUMERICAL-SIMULATION OF IGNITION PROCESSES
    WARNATZ, J
    NUMERICAL COMBUSTION, 1989, 351 : 149 - 170
  • [4] NUMERICAL-SIMULATION OF THE TRANSIENT IGNITION REGIME OF A TURBULENT-DIFFUSION FLAME
    VEYNANTE, D
    LACAS, F
    CANDEL, SM
    AIAA JOURNAL, 1991, 29 (05) : 848 - 851
  • [5] EVAPORATION AND COMBUSTION OF SPRAYS
    FAETH, GM
    PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 1983, 9 (1-2) : 1 - 76
  • [6] Evaporation and ignition of droplets in combustion chambers modeling and simulation
    Betelin, V. B.
    Smirnov, N. N.
    Nikitin, V. F.
    Dushin, V. R.
    Kushnirenko, A. G.
    Nerchenko, V. A.
    ACTA ASTRONAUTICA, 2012, 70 : 23 - 35
  • [7] EVAPORATION OF SPRAYS IN COMBUSTION REACTORS
    MUNZ, N
    EISENKLAM, P
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1976, 172 (SEP3): : 19 - 19
  • [8] NUMERICAL-SIMULATION OF IGNITION IN SUPERSONIC REACTIVE SHEAR LAYERS
    JU, YG
    NIIOKA, T
    JSME INTERNATIONAL JOURNAL SERIES B-FLUIDS AND THERMAL ENGINEERING, 1994, 37 (04): : 835 - 843
  • [9] NUMERICAL-SIMULATION OF PULVERIZED COAL COMBUSTION AND EMISSION
    ESSENHIGH, RH
    GHIA, U
    MITTAL, ML
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1993, 206 : 113 - FUEL
  • [10] ADVANCES IN NUMERICAL-SIMULATION OF PULSATING COMBUSTION AT ENEL
    BENELLI, G
    COSSALTER, V
    DALIO, M
    COMBUSTION SCIENCE AND TECHNOLOGY, 1993, 94 (1-6) : 317 - 335