DIMENSIONAL SCALING FOR QUASI-STATIONARY STATES

被引:42
|
作者
KAIS, S
HERSCHBACH, DR
机构
[1] Department of Chemistry, Harvard University, Cambridge
来源
JOURNAL OF CHEMICAL PHYSICS | 1993年 / 98卷 / 05期
关键词
D O I
10.1063/1.464027
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Complex energy eigenvalues which specify the location and width of quasibound or resonant states are computed to good approximation by a simple dimensional scaling method. As applied to bound states, the method involves minimizing an effective potential function in appropriately scaled coordinates to obtain exact energies in the D --> infinity limit, then computing approximate results for D = 3 by a perturbation expansion in I/D about this limit. For resonant states, the same procedure is used, with the radial coordinate now allowed to be complex. Five examples are treated: the repulsive exponential potential (e(-r)); a squelched harmonic oscillator (r2e(-r)); the inverted Kratzer potential (r-1 repulsion plus r-2 attraction); the Lennard-Jones potential (r-12 repulsion, r-6 attraction); and quasibound states for the rotational spectrum of the hydrogen molecule (X 1SIGMA(g)+, v = 0, J = 0 to 50). Comparisons with numerical integrations and other methods show that the much simpler dimensional scaling method, carried to second-order (terms in 1/D2), yields good results over an extremely wide range of the ratio of level widths to spacings. Other methods have not yet evaluated the very broad H-2 rotational resonances reported here (J> 39), which lie far above the centrifugal barrier.
引用
下载
收藏
页码:3990 / 3998
页数:9
相关论文
共 50 条
  • [1] EXCITATION OF QUASI-STATIONARY STATES
    MALEV, AV
    RUDAKOV, VS
    VESTNIK LENINGRADSKOGO UNIVERSITETA SERIYA FIZIKA KHIMIYA, 1988, (02): : 84 - 86
  • [2] Quasi-stationary states in low-dimensional Hamiltonian systems
    Baldovin, F
    Brigatti, E
    Tsallis, C
    PHYSICS LETTERS A, 2004, 320 (04) : 254 - 260
  • [3] QUASI-STATIONARY QUASI-ENERGY STATES
    MANAKOV, NL
    RAPOPORT, LP
    FAINSHTEIN, AG
    IZVESTIYA AKADEMII NAUK SSSR SERIYA FIZICHESKAYA, 1981, 45 (12): : 2401 - 2419
  • [4] Quasi-stationary states in a circular geometry
    Keetels, G. H.
    Clercx, H. J. H.
    van Heijst, G. J. F.
    PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (14) : 1129 - 1142
  • [5] TIME EVOLUTION OF QUASI-STATIONARY STATES
    RAZAVY, M
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1975, 13 (04) : 237 - 257
  • [6] VARIATIONAL PRINCIPLES FOR QUASI-STATIONARY STATES
    RUDAKOV, VS
    PHYSICS LETTERS, 1965, 17 (03): : 261 - &
  • [7] QUANTIZATION RULES FOR QUASI-STATIONARY STATES
    POPOV, VS
    MUR, VD
    SERGEEV, AV
    PHYSICS LETTERS A, 1991, 157 (4-5) : 185 - 191
  • [8] THE QUASI-STATIONARY STATES IN MULTIPULSE NQR
    OSOKIN, DY
    ERMAKOV, VL
    KURBANOV, RH
    SHAGALOV, VA
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1992, 47 (1-2): : 439 - 445
  • [9] Quasi-stationary chaotic states in multi-dimensional Hamiltonian systems
    Antonopoulos, Ch.
    Bountis, T.
    Basios, V.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2011, 390 (20) : 3290 - 3307
  • [10] QUASI-STATIONARY STATES OF DIATOMIC-MOLECULES
    SAZONOV, IE
    OPTIKA I SPEKTROSKOPIYA, 1975, 38 (06): : 1096 - 1099