An Adaptive Neuro-Fuzzy Inference System (ANFIS) for Wire-EDM of Ballistic Grade Aluminium Alloy

被引:15
|
作者
Singh, T. [1 ]
Misra, J. P. [1 ]
Upadhyay, V [2 ]
Rao, P. S. [3 ]
机构
[1] NIT Kurukshetra, Mech Engn Dept, Thanesar, Haryana, India
[2] NIT Patna, Mech Engn Dept, Patna, Bihar, India
[3] NITTTR Chandigarh, Mech Engn Dept, Chandigarh, India
关键词
AA; 6063; wire-EDM; MRR; ANFIS;
D O I
10.15282/ijame.15.2.2018.11.0408
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Intricacy and complexity of ballistic missile and aerospace parts makes WEDM an essential machining process. The current study aims to formulate an ANFIS model for Wire-EDM of ballistic grade aluminium alloy. The experimentation has been conducted with four input variables namely pulse on time (T-on), pulse off time (T-off), peak current (I-p), and servo voltage (V-s). Material removal rate (MRR) is employed as process performance evaluator. The values predicted by the developed model are found closer to experimental outcome and thus ensures the model suitability for prediction purpose and intelligent manufacturing. Machined surfaces are also examined by the scanning electron microscope (SEM) to obtain better insight of the process.
引用
收藏
页码:5295 / 5307
页数:13
相关论文
共 50 条
  • [1] An adaptive neuro-fuzzy inference system (ANFIS) model for wire-EDM
    Caydas, Ulas
    Hascalik, Ahmet
    Ekici, Sami
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (03) : 6135 - 6139
  • [2] Multi response optimization of wire-EDM process parameters of ballistic grade aluminium alloy
    Bobbili, Ravindranadh
    Madhu, V.
    Gogia, A. K.
    [J]. ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH, 2015, 18 (04): : 720 - 726
  • [3] Prediction of quality responses in micro-EDM process using an adaptive neuro-fuzzy inference system (ANFIS) model
    Suganthi, X. Hyacinth
    Natarajan, U.
    Sathiyamurthy, S.
    Chidambaram, K.
    [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2013, 68 (1-4): : 339 - 347
  • [4] Prediction of quality responses in micro-EDM process using an adaptive neuro-fuzzy inference system (ANFIS) model
    X. Hyacinth Suganthi
    U. Natarajan
    S. Sathiyamurthy
    K. Chidambaram
    [J]. The International Journal of Advanced Manufacturing Technology, 2013, 68 : 339 - 347
  • [5] Adaptive Neuro-Fuzzy Inference System (ANFIS) in Modelling Breast Cancer Survival
    Hamdan, Hazlina
    Garibaldi, Jonathan M.
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2010), 2010,
  • [6] Modeling and Simulation of an Adaptive Neuro-Fuzzy Inference System (ANFIS) for Mobile Learning
    Al-Hmouz, Ahmed
    Shen, Jun
    Al-Hmouz, Rami
    Yan, Jun
    [J]. IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, 2012, 5 (03): : 226 - 237
  • [7] LANDSLIDE SUSCEPTIBILITY MAPPING BY USING AN ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS)
    Choi, J.
    Lee, Y. K.
    Lee, M. J.
    Kim, K.
    Park, Y.
    Kim, S.
    Goo, S.
    Cho, M.
    Sim, J.
    Won, J. S.
    [J]. 2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 1989 - 1992
  • [8] An Implementation of the Adaptive Neuro-Fuzzy Inference System (ANFIS) for Odor Source Localization
    Wang, Lingxiao
    Pang, Shuo
    [J]. 2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 4551 - 4558
  • [9] Adaptive neuro-fuzzy inference system (ANFIS): modelling, analysis, and optimisation of process parameters in the micro-EDM process
    Bhiradi, Ishwar
    Raju, Leera
    Hiremath, Somashekhar S.
    [J]. ADVANCES IN MATERIALS AND PROCESSING TECHNOLOGIES, 2020, 6 (01) : 133 - 145
  • [10] Some applications of Adaptive Neuro-Fuzzy Inference System (ANFIS) in geotechnical engineering
    Cabalar, Ali Firat
    Cevik, Abdulkadir
    Gokceoglu, Candan
    [J]. COMPUTERS AND GEOTECHNICS, 2012, 40 : 14 - 33