A Modified Gauss-Newton Iterative Method for Nonlinear Models with Right-Censored Data

被引:0
|
作者
Zong Xu-ping [1 ]
Feng Guolin [2 ]
机构
[1] Yangzhou Univ, Sch Math, Yangzhou 225002, Jiangsu, Peoples R China
[2] Chinese Natl Climate Ctr, Beijing 100081, Peoples R China
关键词
Gauss-Newton iteration method; Right-censored data; Nonlinear regression models;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents Modified Gauss-Newton iteration algorithm for the nonlinear regression models for Failure Time Data set. The convergence of the iteration is proved carefully. Simulation illustrated that our method is available. Our results may be regarded as an extension of Wei (1998) for exponential nonlinear regression models without failure time data.
引用
收藏
页码:105 / 110
页数:6
相关论文
共 50 条
  • [1] IMPROVED GAUSS-NEWTON ITERATION METHOD FOR NONLINEAR RANDOM EFFECT MODELS WITH RIGHT-CENSORED DATA
    Zong Xu-ping
    Feng Guo-lin
    [J]. DCABES 2009: THE 8TH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED COMPUTING AND APPLICATIONS TO BUSINESS, ENGINEERING AND SCIENCE, PROCEEDINGS, 2009, : 35 - 37
  • [2] An Iterative Algorithm for Microwave Tomography Using Modified Gauss-Newton Method
    Kundu, A. K.
    Bandyopadhyay, B.
    Sanyal, S.
    [J]. 4TH KUALA LUMPUR INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING 2008, VOLS 1 AND 2, 2008, 21 (1-2): : 511 - +
  • [3] Modified estimators in semiparametric regression models with right-censored data
    Aydin, Dursun
    Yilmaz, Ersin
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2018, 88 (08) : 1470 - 1498
  • [4] On the Gauss-Newton method
    Argyros I.K.
    Hilout S.
    [J]. Journal of Applied Mathematics and Computing, 2011, 35 (1-2) : 537 - 550
  • [5] Gauss-Newton method
    Wang, Yong
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2012, 4 (04): : 415 - 420
  • [6] A Robust Gauss-Newton Algorithm for the Optimization of Hydrological Models: From Standard Gauss-Newton to Robust Gauss-Newton
    Qin, Youwei
    Kavetski, Dmitri
    Kuczera, George
    [J]. WATER RESOURCES RESEARCH, 2018, 54 (11) : 9655 - 9683
  • [7] Solving Nonlinear Inverse Problems Based on the Regularized Modified Gauss-Newton Method
    Vasin, V. V.
    [J]. DOKLADY MATHEMATICS, 2022, 105 (03) : 175 - 177
  • [8] Piecewise Cox models with right-censored data
    Wong, George Y. C.
    Osborne, Michael P.
    Diao, Qinggang
    Yu, Qiqing
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (10) : 7894 - 7908
  • [9] A Family of Iterative Gauss-Newton Shooting Methods for Nonlinear Optimal Control
    Giftthaler, Markus
    Neunert, Michael
    Staeuble, Markus
    Buchli, Jonas
    Diehl, Moritz
    [J]. 2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2018, : 6903 - 6910
  • [10] Newton and Gauss-Newton method in the estimation of nonlinear regression model parameters
    Silva, Edilson M.
    Fruhauf, Ariana C.
    Fernandes, Felipe A.
    Paula, Gustavo S.
    Muniz, Joel A.
    Fernandes, Tales J.
    [J]. SIGMAE, 2019, 8 (02): : 728 - 734