GENERAL STOCHASTIC OSCILLATORY SYSTEMS

被引:0
|
作者
GAWAD, EFA [1 ]
ELTAWIL, MA [1 ]
机构
[1] CAIRO UNIV,FAC ENGN,DEPT ENGN MATH,GIZA,EGYPT
关键词
OSCILLATORY SYSTEMS; RANDOM PROCESSES; NONLINEAR SYSTEMS;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a general stochastic nonlinear oscillatory system with a single degree of freedom. Square and cubic nonlinearities are considered. The excitation function is a nonstationary Gaussian process with zero mean. The solution moments are obtained using the small-parameter perturbation method with the Wiener-Hermite expansion approach. Computer results along with graphs are presented.
引用
收藏
页码:329 / 335
页数:7
相关论文
共 50 条
  • [1] STOCHASTIC SAMPLE STABILITY OF OSCILLATORY SYSTEMS
    ARIARATNAM, ST
    XIE, WC
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1988, 55 (02): : 458 - 460
  • [2] Oscillatory stochastic systems with nonlinear dissipations
    Wedig, WV
    von Wagner, U
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2000, 80 : S309 - S310
  • [3] On controlling stochastic sensitivity of oscillatory systems
    I. A. Bashkirtseva
    D. R. Nurmukhametova
    L. B. Ryashko
    Automation and Remote Control, 2013, 74 : 932 - 943
  • [4] On Controlling Stochastic Sensitivity of Oscillatory Systems
    Bashkirtseva, I. A.
    Nurmukhametova, D. R.
    Ryashko, L. B.
    AUTOMATION AND REMOTE CONTROL, 2013, 74 (06) : 932 - 943
  • [5] Oscillatory amplification of stochastic resonance in excitable systems
    Volkov, EI
    Ullner, E
    Zaikin, AA
    Kurths, J
    PHYSICAL REVIEW E, 2003, 68 (02):
  • [6] Numerical simulation of nonlinear oscillatory systems under stochastic perturbations
    Kulchitski, OY
    Kuznetsov, DF
    CONTROL OF OSCILLATIONS AND CHAOS - 1997 1ST INTERNATIONAL CONFERENCE, PROCEEDINGS, VOLS 1-3, 1997, : 242 - 245
  • [7] Bisimulation for general stochastic hybrid systems
    Bujorianu, ML
    Lygeros, J
    Bujorianu, MC
    HYBRID SYSTEMS: COMPUTATION AND CONTROL, 2005, 3414 : 198 - 214
  • [8] STABILITY OF ASYMPTOTICALLY HAMILTONIAN SYSTEMS WITH DAMPED OSCILLATORY AND STOCHASTIC PERTURBATIONS
    Sultanov, Oskar A.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2024, 23 (04) : 432 - 462
  • [10] GENERAL THEORY OF RESONANCE BETWEEN WEAKLY COUPLED OSCILLATORY SYSTEMS
    CHESTER, W
    JOURNAL OF THE INSTITUTE OF MATHEMATICS AND ITS APPLICATIONS, 1978, 22 (04): : 383 - 399