Graphs, Spectral Triples and Dirac Zeta Functions

被引:0
|
作者
de Jong, Jan Willem [1 ]
机构
[1] Univ Utrecht, Dept Math, POB 80010, NL-3508 TA Utrecht, Netherlands
关键词
finitely summable spectral triple; Dirac zeta-function; graph; group actions on limit sets; categories in noncommutative geometry;
D O I
10.1134/S2070046609040025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
To a finite, connected, unoriented graph of Betti-number g >= 2 and valencies >= 3 we associate a finitely summable, commutative spectral triple (in the sense of Connes), whose induced zeta functions encode the graph. This gives another example where non-commutative geometry provides a rigid framework for classification.
引用
收藏
页码:286 / 296
页数:11
相关论文
共 50 条