BAYESIAN CONFIDENCE ESTIMATION - AN ALTERNATIVE APPROACH

被引:1
|
作者
DELAHORRA, J [1 ]
机构
[1] UNIV AUTONOMA MADRID,DEPT MATEMAT,E-28049 MADRID,SPAIN
关键词
KOLMOGOROV-SMIRNOV LOSS; INTERVAL ESTIMATION; POSTERIOR EXPECTED LOSS; POSTERIOR PROBABILITY;
D O I
10.1080/03610929108830632
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
From a Bayesian point of view, the estimation of an unknown parameter can be interpreted (in many situations) as the problem of fixing a partition of the parameter space (by means of small intervals I1,...,I(k)) and choosing an interval I(j) from this partition, provided that sufficient information has been obtained. This idea is developed in a decision theory setting. If the Kolmogorov-Smirnov loss is used, it is proved that I(j) is the best interval estimation if and only if its posterior probability is greater than or equal to 1/2.
引用
收藏
页码:2299 / 2306
页数:8
相关论文
共 50 条
  • [1] An Alternative Approach to Confidence Interval Estimation for the Win Ratio Statistic
    Luo, Xiaodong
    Tian, Hong
    Mohanty, Surya
    Tsai, Wei Yann
    BIOMETRICS, 2015, 71 (01) : 139 - 145
  • [2] Sequential Bayesian technique: An alternative approach for software reliability estimation
    S. Chatterjee
    S. S. Alam
    R. B. Misra
    Sadhana, 2009, 34
  • [3] Confidence in classification: A Bayesian approach
    Krzanowski, Wojtek J.
    Bailey, Trevor C.
    Partridge, Derek
    Fieldsend, Jonathan E.
    Everson, Richard M.
    Schetinin, Vitaly
    JOURNAL OF CLASSIFICATION, 2006, 23 (02) : 199 - 220
  • [4] Confidence in Classification: A Bayesian Approach
    Wojtek J. Krzanowski
    Trevor C. Bailey
    Derek Partridge
    Jonathan E. Fieldsend
    Richard M. Everson
    Vitaly Schetinin
    Journal of Classification, 2006, 23 : 199 - 220
  • [5] Sequential Bayesian technique: An alternative approach for software reliability estimation
    Chatterjee, S.
    Alam, S. S.
    Misra, R. B.
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2009, 34 (02): : 235 - 241
  • [6] On the Estimation of Confidence Intervals for Binomial Population Proportions in Astronomy: The Simplicity and Superiority of the Bayesian Approach
    Cameron, Ewan
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF AUSTRALIA, 2011, 28 (02): : 128 - 139
  • [7] Maximum-a-Posteriori Estimation with Bayesian Confidence Regions
    Pereyra, Marcelo
    SIAM JOURNAL ON IMAGING SCIENCES, 2017, 10 (01): : 285 - 302
  • [8] Confidence of compliance: A Bayesian approach for percentile standards
    McBride, GB
    Ellis, JC
    WATER RESEARCH, 2001, 35 (05) : 1117 - 1124
  • [9] A probabilistic approach to confidence estimation and evaluation
    Gillick, L
    Ito, Y
    Young, J
    1997 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I - V: VOL I: PLENARY, EXPERT SUMMARIES, SPECIAL, AUDIO, UNDERWATER ACOUSTICS, VLSI; VOL II: SPEECH PROCESSING; VOL III: SPEECH PROCESSING, DIGITAL SIGNAL PROCESSING; VOL IV: MULTIDIMENSIONAL SIGNAL PROCESSING, NEURAL NETWORKS - VOL V: STATISTICAL SIGNAL AND ARRAY PROCESSING, APPLICATIONS, 1997, : 879 - 882
  • [10] Interval estimation by simulation as an alternative to and extension of confidence intervals
    Greenland, S
    INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2004, 33 (06) : 1389 - 1397