DISCRETIZATION ERROR IN SIMULATION OF ONE-DIMENSIONAL REFLECTING BROWNIAN MOTION

被引:83
|
作者
Asmussen, Soren [1 ]
Glynn, Peter [2 ]
Pitman, Jim [3 ]
机构
[1] Univ Aalborg, Inst Elect Syst, DK-9220 Aalborg, Denmark
[2] Stanford Univ, Dept Operat Res, Stanford, CA 94305 USA
[3] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
来源
ANNALS OF APPLIED PROBABILITY | 1995年 / 5卷 / 04期
关键词
Bessel bridge; Bessel process; bias; excursion; Euler scheme; path decomposition; Riemann zeta function; Spitzer's identity; stochastic differential equation;
D O I
10.1214/aoap/1177004597
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper is concerned with various aspects of the simulation of one-dimensional reflected (or regulated) Brownian motion. The main result shows that the discretization error associated with the Euler scheme for simulation of such a process has both a strong and weak order of convergence of precisely 1/2. This contrasts with the faster order 1 achievable for simulations of SDE's without reflecting boundaries. The asymptotic distribution of the discretization error is described using Williams' decomposition of a Brownian path at the time of a minimum. Improved methods for simulation of reflected Brownian motion are discussed.
引用
收藏
页码:875 / 896
页数:22
相关论文
共 50 条
  • [1] ON ONE-DIMENSIONAL BROWNIAN MOTION
    GHAFFARI, A
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1951, 57 (06) : 481 - 481
  • [2] Simulation of one-dimensional Brownian motion by stochastic differential equations
    Muranaka, K
    [J]. JOURNAL OF CHEMICAL EDUCATION, 1999, 76 (07) : 994 - 998
  • [3] DIMENSIONAL PROPERTIES OF ONE-DIMENSIONAL BROWNIAN-MOTION
    KAUFMAN, R
    [J]. ANNALS OF PROBABILITY, 1989, 17 (01): : 189 - 193
  • [4] Span of one-dimensional multiparticle Brownian motion
    Madhavi, Sastry, G.
    Agmon, Noam
    [J]. Journal of Chemical Physics, 1996, 104 (08):
  • [5] ONSET OF BROWNIAN MOTION IN A ONE-DIMENSIONAL FLUID
    BISHOP, M
    BERNE, BJ
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1972, 56 (06): : 2850 - &
  • [6] The span of one-dimensional multiparticle Brownian motion
    Sastry, GM
    Agmon, N
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1996, 104 (08): : 3022 - 3025
  • [7] DISCRETIZATION ERROR OF REFLECTED FRACTIONAL BROWNIAN MOTION
    McGlaughlin, Peter
    Chronopoulou, Alexandra
    [J]. 2016 WINTER SIMULATION CONFERENCE (WSC), 2016, : 270 - 276
  • [8] ANALYTICITY AND PROBABILITY PROPERTIES OF ONE-DIMENSIONAL BROWNIAN MOTION
    GHAFFARI, A
    [J]. JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS SECTION B-MATHEMATICAL SCIENCES, 1961, 65 (04): : 251 - 260
  • [9] Experimental System for One-Dimensional Rotational Brownian Motion
    McNaughton, Brandon H.
    Kinnunen, Paivo
    Shlomi, Miri
    Cionca, Codrin
    Pei, Shao Ning
    Clarke, Roy
    Argyrakis, Panos
    Kopelman, Raoul
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2011, 115 (18): : 5212 - 5218
  • [10] Regular Dirichlet extensions of one-dimensional Brownian motion
    Li, Liping
    Ying, Jiangang
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2019, 55 (04): : 1815 - 1849