A combination of clausal and non clausal temporal logic programs

被引:0
|
作者
Kono, S
机构
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We have developed Tokio interpreter [5] for first order Interval Temporal Logic [11] and an automatic theorem prover [6, 7] for Propositional Interval Temporal Logic. The verifier features deterministic tableau expansion and binary decision tree representation of subterms. Combining these, we can avoid repeated similar clausal form time constraints, and it is possible to execute wider range of specifications without time-backtracking.
引用
收藏
页码:40 / 57
页数:18
相关论文
共 50 条
  • [1] COMPOSING RECURSIVE LOGIC PROGRAMS WITH CLAUSAL JOIN
    LAKHOTIA, A
    STERLING, L
    [J]. NEW GENERATION COMPUTING, 1988, 6 (2-3) : 211 - 225
  • [2] From Non-Clausal to Clausal MinSAT
    Li, Chu-Min
    Manya, Felip
    Soler, Joan Ramon
    Vidal, Amanda
    [J]. ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT, 2021, 339 : 27 - 36
  • [3] Propositional Clausal Defeasible Logic
    Billington, David
    [J]. LOGICS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2008, 5293 : 34 - 47
  • [4] Clausal logic and logic programming in algebraic domains
    Rounds, WC
    Zhang, GQ
    [J]. INFORMATION AND COMPUTATION, 2001, 171 (02) : 183 - 200
  • [5] A clausal resolution method for CTL branching-time temporal logic
    Bolotov, A
    Fisher, M
    [J]. JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE, 1999, 11 (01) : 77 - 93
  • [6] Clausal resolution in a logic of rational agency
    Dixon, C
    Fisher, M
    Bolotov, A
    [J]. ARTIFICIAL INTELLIGENCE, 2002, 139 (01) : 47 - 89
  • [7] REWRITE METHODS FOR CLAUSAL AND NON-CLAUSAL THEOREM-PROVING
    HSIANG, J
    DERSHOWITZ, N
    [J]. LECTURE NOTES IN COMPUTER SCIENCE, 1983, 154 : 331 - 346
  • [8] Algorithms for guiding clausal temporal resolution
    Gago, MCF
    Fisher, M
    Dixon, C
    [J]. KI2002: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2002, 2479 : 235 - 249
  • [9] Learning in clausal logic: A perspective on inductive logic programming
    Flach, P
    Lavrac, N
    [J]. COMPUTATIONAL LOGIC: LOGIC PROGRAMMING AND BEYOND, PT I: ESSAYS IN HONOUR OF ROBERT A KOWALSKI, 2002, 2407 : 437 - 471
  • [10] Inductive equivalence in clausal logic and nonmonotonic logic programming
    Chiaki Sakama
    Katsumi Inoue
    [J]. Machine Learning, 2011, 83 : 1 - 29