K-MATRIX FOR WOODS-SAXON POTENTIAL

被引:2
|
作者
TALUKDAR, B [1 ]
SINHARAY, MN [1 ]
机构
[1] VISVA BHARATI UNIV,DEPT PHYS,SANTINIKETAN 731235,W BENGAL,INDIA
关键词
D O I
10.1063/1.523187
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:2097 / 2098
页数:2
相关论文
共 50 条
  • [1] Remarks on the Woods-Saxon potential
    Capak, M.
    Gonul, B.
    [J]. MODERN PHYSICS LETTERS A, 2016, 31 (23)
  • [2] Various parametrizations of the Woods-Saxon potential
    Lojewski, Z
    Dudek, J
    [J]. ACTA PHYSICA POLONICA B, 1998, 29 (1-2): : 407 - 417
  • [3] Damping the tail of the Woods-Saxon potential
    Baran, A.
    Vertse, T.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2019, 28 (10):
  • [4] Solutions for a generalized Woods-Saxon potential
    Gunul, Buelent
    Koksal, Koray
    [J]. PHYSICA SCRIPTA, 2007, 76 (05) : 565 - 570
  • [5] The Woods-Saxon potential with point interactions
    Erkol, Hakan
    Demiralp, Ersan
    [J]. PHYSICS LETTERS A, 2007, 365 (1-2) : 55 - 63
  • [6] The Woods-Saxon potential in the Dirac equation
    Kennedy, P
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (03): : 689 - 698
  • [7] Distributions of the S-matrix poles in Woods-Saxon and cut-off Woods-Saxon potentials
    Salamon, P.
    Baran, A.
    Vertse, T.
    [J]. NUCLEAR PHYSICS A, 2016, 952 : 1 - 17
  • [8] Scattering of the Woods-Saxon potential in the Schrodinger equation
    Arda, Altug
    Aydogdu, Oktay
    Sever, Ramazan
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (42)
  • [9] Woods-Saxon Equivalent to a Double Folding Potential
    A. S. Freitas
    L. Marques
    X. X. Zhang
    M. A. Luzio
    P. Guillaumon
    R. Pampa Condori
    R. Lichtenthäler
    [J]. Brazilian Journal of Physics, 2016, 46 : 120 - 128
  • [10] Woods-Saxon Equivalent to a Double Folding Potential
    Freitas, A. S.
    Marques, L.
    Zhang, X. X.
    Luzio, M. A.
    Guillaumon, P.
    Condori, R. Pampa
    Lichtenthaeler, R.
    [J]. BRAZILIAN JOURNAL OF PHYSICS, 2016, 46 (01) : 120 - 128