Solving Hard Multiobjective Problems with a Hybridized Method

被引:0
|
作者
Cagnina, Leticia C. [1 ]
Esquivel, Susana C. [1 ]
机构
[1] Univ Nacl San Luis, LIDIC Res Grp, Ej Andes 950, RA-5700 San Luis, Argentina
来源
关键词
Particle Swarm Optimzation; Multi-objective Optimization; Epsilo-constraint Method;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a hybrid method to solve hard multiobjective problems. The proposed approach adopts an epsilon-constraint method which uses a Particle Swarm Optimizer to get points near of the true Pareto front. In this approach, only few points will be g enerated and then, new intermediate points will be calculated using a n interpolation method, to increase the among of points in the output Pareto front. The proposed approach is validated using two difficult multiobjective test problems and the results are compared with those obtained by a multiobjective evolutionary algorithm representative of the state of the art: NSGA-II
引用
收藏
页码:117 / 122
页数:6
相关论文
共 50 条
  • [1] Method for solving group multiobjective decision problems
    Meng, Zhi-Qing
    Hu, Yu-Da
    Hu, Qi-Ying
    [J]. Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice, 2006, 26 (06): : 69 - 74
  • [2] A constraint function method for solving multiobjective optimization problems
    Lu Baiquan
    Gao Gaiqin
    Wang Fei
    Wang Jin
    Li Jin
    [J]. PROCEEDINGS OF THE 2009 WRI GLOBAL CONGRESS ON INTELLIGENT SYSTEMS, VOL IV, 2009, : 224 - 228
  • [3] A relaxed projection method for solving multiobjective optimization problems
    Brito, A. S.
    Cruz Neto, J. X.
    Santos, P. S. M.
    Souza, S. S.
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2017, 256 (01) : 17 - 23
  • [4] A Smoothing Method for Solving Bilevel Multiobjective Programming Problems
    Lü Y.-B.
    Wan Z.-P.
    [J]. Journal of the Operations Research Society of China, 2014, 2 (04) : 511 - 525
  • [5] Solving hard multiobjective optimization problems using ε-constraint with cultured differential evolution
    Landa Becerra, Ricardo
    Coello Coello, Carlos A.
    [J]. PARALLEL PROBLEM SOLVING FROM NATURE - PPSN IX, PROCEEDINGS, 2006, 4193 : 543 - 552
  • [6] Generalized Equivalence Set Method for Solving Multiobjective Optimization Problems
    Khachaturov, R. V.
    [J]. JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 2019, 58 (06) : 922 - 931
  • [7] Extension of Zoutendijk method for solving constrained multiobjective optimization problems
    Morovati, Vahid
    Pourkarimi, Latif
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2019, 273 (01) : 44 - 57
  • [8] Generalized Equivalence Set Method for Solving Multiobjective Optimization Problems
    R. V. Khachaturov
    [J]. Journal of Computer and Systems Sciences International, 2019, 58 : 922 - 931
  • [9] SOLVING MULTIOBJECTIVE TRANSPORTATION PROBLEMS
    DIAZ, JA
    [J]. EKONOMICKO-MATEMATICKY OBZOR, 1978, 14 (03): : 267 - 274
  • [10] SOLVING HARD PROBLEMS
    Murdoch, Joseph R.
    [J]. CHEMICAL & ENGINEERING NEWS, 2010, 88 (50) : 4 - 5