Object-based Classification of Point Clouds

被引:0
|
作者
Mayr, Andreas [1 ,2 ,3 ]
Rutzinger, Martin [4 ]
机构
[1] UIBKs, Inst Geog, Innsbruck, Austria
[2] Remote Sensing & Topog LiDAR Res Grp, Innsbruck, Austria
[3] Soil Sci & Landscape Ecol Res Grp, Innsbruck, Austria
[4] Austrian Acad Sci Innsbruck, Inst Interdisciplinary Mt Res, Remote Sensing & Geomat Res Grp, Innsbruck, Austria
关键词
D O I
暂无
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Today, the analysis of 3D point clouds acquired with topographic Lidar or photogrammetric systems has become an operational task for mapping and monitoring of infrastructure and environmental processes. Numerous applications require the identification and delineation of landscape objects and their properties. So far, many software solutions have been focused on the analysis of constructed and man-made objects, which are characterised by a regular and well- defined geometry (e.g. buildings, roads and other infrastructure). In comparison, the detection and analysis of natural landscape objects is challenging, since object boundaries might be fuzzy and the object characteristics within one class can be very diverse.
引用
收藏
页码:18 / 21
页数:4
相关论文
共 50 条
  • [1] Object-based classification of terrestrial laser scanning point clouds for landslide monitoring
    Mayr, Andreas
    Rutzinger, Martin
    Bremer, Magnus
    Elberink, Sander Oude
    Stumpf, Felix
    Geitner, Clemens
    [J]. PHOTOGRAMMETRIC RECORD, 2017, 32 (160): : 377 - 397
  • [2] Object-Based Classification of Airborne Light Detection and Ranging Point Clouds in Human Settlements
    Shen, Jing
    Liu, Jiping
    Lin, Xiangguo
    Zhao, Rong
    [J]. SENSOR LETTERS, 2012, 10 (1-2) : 221 - 229
  • [3] Object-based incremental registration of terrestrial point clouds in an urban environment
    Ge, Xuming
    Hu, Han
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2020, 161 : 218 - 232
  • [4] Object-based building instance segmentation from airborne LiDAR point clouds
    Yang, Wangshan
    Liu, Xinyi
    Zhang, Yongjun
    Wan, Yi
    Ji, Zheng
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (18) : 6783 - 6808
  • [5] OBJECT-BASED COREGISTRATION OF TERRESTRIAL PHOTOGRAMMETRIC AND ALS POINT CLOUDS IN FORESTED AREAS
    Polewski, P.
    Erickson, A.
    Yao, W.
    Coop, N.
    Krzystek, P.
    Stilla, U.
    [J]. XXIII ISPRS CONGRESS, COMMISSION III, 2016, 3 (03): : 347 - 354
  • [6] Object-based illumination classification
    Hel-Or, HZ
    Wandell, BA
    [J]. PATTERN RECOGNITION, 2002, 35 (08) : 1723 - 1732
  • [7] AN OBJECT-BASED CLASSIFICATION FRAMEWORK FOR ALS POINT CLOUD IN URBAN AREAS
    Zaryabi, E. Hasanpour
    Saadatseresht, M.
    Parmehr, E. Ghanbari
    [J]. ISPRS GEOSPATIAL CONFERENCE 2022, JOINT 6TH SENSORS AND MODELS IN PHOTOGRAMMETRY AND REMOTE SENSING, SMPR/4TH GEOSPATIAL INFORMATION RESEARCH, GIRESEARCH CONFERENCES, VOL. 10-4, 2023, : 278 - 286
  • [8] IDENTIFYING BUILDING CHANGE USING HIGH RESOLUTION POINT CLOUDS - AN OBJECT-BASED APPROACH
    du Plessis, Steve
    [J]. XXII ISPRS CONGRESS, TECHNICAL COMMISSION VII, 2012, 39 (B7): : 305 - 309
  • [9] Object Classification Method for Multi -Source Fusion Point Clouds Based on Point -Net
    Shi Xiaosong
    Cheng Yinglei
    Xue Doudou
    Qin Xianxiang
    [J]. LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (08)
  • [10] Object-Based Representation for Scene Classification
    Luo, Xuhui
    Xu, Jinhua
    [J]. ADVANCES IN ARTIFICIAL INTELLIGENCE, AI 2016, 2016, 9673 : 102 - 108