A ROBUSTNESS PROPERTY OF DOA ESTIMATORS BASED ON COVARIANCE

被引:10
|
作者
CARDOSO, JF [1 ]
MOULINES, E [1 ]
机构
[1] CNRS,URA 820,PARIS,FRANCE
关键词
D O I
10.1109/78.330400
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A simple general formula is derived under a Gaussian model for the asymptotic covariance of direction-of-arrival (DOA) estimators based on the covariance of the sensor array data. It is then established that the same formula remains valid for a vide class of statistical models for source signals. Hence, under mild assumptions, the asymptotic performance of most high-resolution covariance-based DOA estimators is independent of the distribution of the source signals.
引用
收藏
页码:3285 / 3287
页数:3
相关论文
共 50 条
  • [1] GLOBAL ROBUSTNESS CHARACTERIZATION OF DOA ESTIMATORS BY BREAKDOWN DETECTION
    Groll, Herbert
    Zoechmann, Erich
    Gerstoft, Peter
    Mecklenbraeuker, Christoph F.
    [J]. 2019 IEEE 8TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP 2019), 2019, : 36 - 40
  • [2] ROBUSTNESS OF SOME ESTIMATORS FOR THE ANALYSIS OF COVARIANCE-STRUCTURES
    HENLY, SJ
    [J]. BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 1993, 46 : 313 - 338
  • [3] Efficiency of subspace-based DOA estimators
    Abeida, Habti
    Delmas, Jean-Pierre
    [J]. SIGNAL PROCESSING, 2007, 87 (09) : 2075 - 2084
  • [4] BEAMSPACE COVARIANCE-BASED DOA ESTIMATION
    Ferreira, Tadeu N.
    Netto, Sergio L.
    Diniz, Paulo S. R.
    [J]. 2008 IEEE 9TH WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS, VOLS 1 AND 2, 2008, : 136 - 140
  • [5] Covariance-Based DoA Estimation in a Krylov Subspace
    Tadeu N. Ferreira
    Marcello L. R. de Campos
    Sergio L. Netto
    [J]. Circuits, Systems, and Signal Processing, 2015, 34 : 2363 - 2379
  • [6] Covariance-Based DoA Estimation in a Krylov Subspace
    Ferreira, Tadeu N.
    de Campos, Marcello L. R.
    Netto, Sergio L.
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2015, 34 (07) : 2363 - 2379
  • [7] DOA Estimation Method Based on Differential Covariance Matrix
    Zhou, Jie
    Li, Guangjun
    Zheng, Zhi
    [J]. JOURNAL OF COMPUTERS, 2013, 8 (04) : 1078 - 1082
  • [8] THE ROBUSTNESS OF LOGNORMAL-BASED ESTIMATORS OF ABUNDANCE
    MYERS, RA
    PEPIN, P
    [J]. BIOMETRICS, 1990, 46 (04) : 1185 - 1192
  • [9] ON TESTING THE ROBUSTNESS OF LOGNORMAL-BASED ESTIMATORS
    PENNINGTON, M
    [J]. BIOMETRICS, 1991, 47 (04) : 1623 - 1623
  • [10] Consistency and robustness of tests and estimators based on depth
    Denecke, Liesa
    Mueller, Christine H.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (09) : 2501 - 2517