MONTE-CARLO SEARCH;
DISCRETE OPTIMIZATION;
0-1 KNAPSACK PROBLEM;
ORDER STATISTICS;
D O I:
10.1007/BF02238637
中图分类号:
TP301 [理论、方法];
学科分类号:
081202 ;
摘要:
A two-phase global random search procedure for solving some computationally intractable discrete optimization problems is proposed. Guarantees for quality of random search results are derived from analysis of non-asymptotic order statistics and distribution-free intervals that are obtainable in this way: the confidence interval for a quantile of given order, or the tolerance inteval for the parent distribution of goal function values. It has been shown that results, related to the muiticonstrained 0-1 knapsack problem, within a few percentage from the true optimal solution can be obtained.
机构:
N Carolina State Univ, Dept Ind & Syst Engn, Raleigh, NC 27695 USA
Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R ChinaN Carolina State Univ, Dept Ind & Syst Engn, Raleigh, NC 27695 USA
Fang, Shu-Cherng
Gao, David Yang
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
Virginia Tech, Dept Math, Blacksburg, VA 24061 USAN Carolina State Univ, Dept Ind & Syst Engn, Raleigh, NC 27695 USA
Gao, David Yang
Sheu, Ruey-Lin
论文数: 0引用数: 0
h-index: 0
机构:
Natl Cheng Kung Univ, Dept Math, Tainan 70101, TaiwanN Carolina State Univ, Dept Ind & Syst Engn, Raleigh, NC 27695 USA
Sheu, Ruey-Lin
Wu, Soon-Yi
论文数: 0引用数: 0
h-index: 0
机构:
Natl Cheng Kung Univ, Dept Math, Tainan 70101, Taiwan
Natl Ctr Theoret Sci, Tainan, TaiwanN Carolina State Univ, Dept Ind & Syst Engn, Raleigh, NC 27695 USA