Lidar measurements and wavelet covariance transform method to estimate the atmospheric boundary layer heights in Medellin, Colombia

被引:3
|
作者
Nisperuza, Daniel J. [1 ]
Bedoya, Andres E. [1 ]
Alegria, Dairo L. [1 ]
Munera, Mauricio [1 ]
Jimenez, Jose F.
Zapata, Carmen E. [2 ]
Bastidas, Alvaro [1 ]
机构
[1] Univ Nacl Colombia Sede Medellin, Escuela Fis, Grp Invest Laseres Espectroscopia Opt GLEO, Medellin, Colombia
[2] Univ Nacl Colombia Sede Medellin, Escuela Fis, Lab Calidad Aire, Medellin, Colombia
来源
OPTICA PURA Y APLICADA | 2014年 / 47卷 / 02期
关键词
Backscatter Lidar Signal; Atmospheric Boundary Layer Height; Wavelet Covariant Transform Method;
D O I
10.7149/OPA.47.2.123
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The Atmospheric Boundary Layer (ABL) includes the portion of the atmosphere which is directly influenced by the presence of the Earth's surface, and usually has much higher aerosol concentration than free troposphere above. Lidar system measures the intensity of backscattered light mainly from aerosol particles as a function of distance. Thus, the significant change in the backscatter across the top of the BL provides a means of determining ABL heights. Whereas an urban area situated in a complex mountain valley of Colombian tropical Andean region, we present the first results of estimating the height of the daytime ABL for Medellin city (Lat: 6 degrees 15' 38.37'', Long: -75 degrees 34' 40.46'', Alt: 1483 m a.s.l.), using the wavelet covariant transform method in processing the elastic backscatter signal collected by a lidar built in Medellin city.
引用
收藏
页码:123 / 130
页数:8
相关论文
共 50 条
  • [1] Retrieval of the planetary boundary layer height from lidar measurements by a deep-learning method based on the wavelet covariance transform
    Mei, Liang
    Wang, Xiaoqi
    Gong, Zhenfeng
    Liu, Kun
    Hua, Dengxin
    Wang, Xiaona
    OPTICS EXPRESS, 2022, 30 (10): : 16297 - 16312
  • [2] Detection of the planetary boundary layer height by employing the Scheimpflug lidar technique and the covariance wavelet transform method
    Mei, Liang
    Li, Limei
    Liu, Zhi
    Fei, Ruonan
    Lu, Qingqing
    Chen, Ke
    Gong, ZhengFeng
    APPLIED OPTICS, 2019, 58 (29) : 8013 - 8020
  • [3] Finding boundary layer top: Application of a wavelet covariance transform to lidar backscatter profiles
    Brooks, I.M. (ibrooks@env.leeds.ac.uk), 1600, American Meteorological Society (20):
  • [4] Finding boundary layer top: Application of a wavelet covariance transform to lidar backscatter profiles
    Brooks, IM
    JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2003, 20 (08) : 1092 - 1105
  • [5] Finding boundary layer top for the stable layer: Application of a Haar wavelet covariance transform to lidar observations
    Brooks, IM
    15TH SYMPOSIUM ON BOUNDARY LAYERS AND TURBULENCE, 2002, : 167 - 170
  • [6] Portable lidar system for atmospheric boundary layer measurements
    Kumar, Yellapragada Bhavani
    OPTICAL ENGINEERING, 2006, 45 (07)
  • [7] ATMOSPHERIC BOUNDARY-LAYER MEASUREMENTS WITH AN AIRBORNE LIDAR
    HANSEN, MZ
    SPINHIRNE, JD
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1982, 72 (12) : 1801 - 1801
  • [8] Detection of atmospheric boundary layer height from lidar measurements
    Stefan, S.
    Talianu, C.
    Nicolae, D.
    Nemuc, A.
    Filip, L.
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2011, 5 (07): : 809 - 813
  • [10] Depolarization ratio measurements in the atmospheric boundary layer by lidar in Tokyo
    Murayama, T
    Furushima, M
    Oda, A
    Iwasaka, N
    JOURNAL OF THE METEOROLOGICAL SOCIETY OF JAPAN, 1996, 74 (04) : 571 - 578