Bounds on the Stability Number of a Graph via the Inverse Theta Function

被引:0
|
作者
Ujvari, Miklos [1 ]
机构
[1] Szent Janos Utca 1, H-2600 Vac, Hungary
来源
ACTA CYBERNETICA | 2016年 / 22卷 / 04期
关键词
stability number; inverse theta number;
D O I
10.14232/actacyb.22.4.2016.5
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In the paper we consider degree, spectral, and semidefinite bounds on the stability number of a graph. The bounds are obtained via reformulations and variants of the inverse theta function, a notion recently introduced by the author in a previous work.
引用
收藏
页码:807 / 822
页数:16
相关论文
共 50 条
  • [1] Semidefinite bounds for the stability number of a graph via sums of squares of polynomials
    Gvozdenovic, Nebojsa
    Laurent, Monique
    MATHEMATICAL PROGRAMMING, 2007, 110 (01) : 145 - 173
  • [2] Semidefinite bounds for the stability number of a graph via sums of squares of polynomials
    Gvozdenovic, N
    Laurent, M
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, PROCEEDINGS, 2005, 3509 : 136 - 151
  • [3] Semidefinite bounds for the stability number of a graph via sums of squares of polynomials
    Nebojša Gvozdenović
    Monique Laurent
    Mathematical Programming, 2007, 110 : 145 - 173
  • [4] Reproducing kernel bounds for an advanced wavelet frame via the theta function
    Pravica, D. W.
    Randriampiry, N.
    Spurr, M. J.
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2012, 33 (01) : 79 - 108
  • [5] LP-ORIENTED UPPER BOUNDS FOR THE WEIGHTED STABILITY NUMBER OF A GRAPH
    Stetsyuk, P. I.
    Lykhovyd, A. P.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2009, 45 (01) : 141 - 152
  • [6] On bounds for the cutting number of a graph
    Mukwembi, Simon
    Hove-Musekwa, Senelani Dorothy
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2012, 43 (06): : 637 - 649
  • [7] BOUNDS FOR THE COVERING NUMBER OF A GRAPH
    ABBOTT, HL
    LIU, AC
    DISCRETE MATHEMATICS, 1979, 25 (03) : 281 - 284
  • [8] Bounds on the Wiener number of a graph
    Walikar, HB
    Shigehalli, VS
    Ramane, HS
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2004, (50) : 117 - 132
  • [9] BOUNDS ON THE DOMINATION NUMBER OF A GRAPH
    BRIGHAM, RC
    DUTTON, RD
    QUARTERLY JOURNAL OF MATHEMATICS, 1990, 41 (163): : 269 - 275
  • [10] BOUNDS ON THE BONDAGE NUMBER OF A GRAPH
    HARTNELL, BL
    RALL, DF
    DISCRETE MATHEMATICS, 1994, 128 (1-3) : 173 - 177