DYNAMICAL SYSTEMS ON HILBERT MODULES OVER LOCALLY C*-ALGEBRAS

被引:0
|
作者
Naranjani, L. [1 ]
Hassani, M. [1 ]
Amyari, M. [1 ]
机构
[1] Islamic Azad Univ, Mashhad Branch, Dept Math, Mashhad, Iran
来源
KRAGUJEVAC JOURNAL OF MATHEMATICS | 2018年 / 42卷 / 02期
关键词
Locally C*-algebra; dynamical system; generalized derivation;
D O I
10.5937/KgJMath1802239N
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a locally C*-algebra and S(A) be the family of continuous C*-seminorms and let epsilon be a Hilbert A-module. We prove that every dynamical system of unitary operators on epsilon defines a dynamical system of automorphisms on the compact operators on epsilon and show that under certain conditions, the converse is true. We define a generalized derivation on epsilon and prove that if epsilon is a full Hilbert A-module and delta : epsilon -> epsilon is a bounded generalized derivation, then delta(p) : epsilon(p) -> epsilon(p) is a generalized derivation on the Hilbert module epsilon(p) over the C*-algebra A(p) for each p is an element of S(A).
引用
收藏
页码:239 / 247
页数:9
相关论文
共 50 条