PRECISION CALCULATION OF DISTRIBUTIONS FOR TRIMMED SUMS

被引:3
|
作者
Csoergo, Sandor [1 ]
Simons, Gordon
机构
[1] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
来源
ANNALS OF APPLIED PROBABILITY | 1995年 / 5卷 / 03期
关键词
Trimmed sums on nonnegative integers; recursive algorithms for distributions; St. Petersburg game;
D O I
10.1214/aoap/1177004708
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Recursive methods are described for computing the frequency and distribution functions of trimmed sums of independent and identically distributed nonnegative integer-valued random variables. Surprisingly, for fixed arguments, these can be evaluated with just a finite number of arithmetic operations (and whatever else it takes to evaluate the common frequency function of the original summands). These methods give rise to very accurate computational algorithms that permit a delicate numerical investigation, herein described, of Feller's weak law of large numbers and its trimmed version for repeated St. Petersburg games. The performance of Stigler's theorem for the asymptotic distribution of trimmed sums is also investigated on the same example.
引用
收藏
页码:854 / 873
页数:20
相关论文
共 50 条
  • [1] Convergence rate of distributions of trimmed sums
    Qi, YC
    Cheng, SH
    CHINESE ANNALS OF MATHEMATICS SERIES B, 1996, 17 (03) : 349 - 364
  • [3] Sums, trimmed sums and extremes
    Applic & Math, 5 (407):
  • [4] ASYMPTOTIC BEHAVIOR OF TRIMMED SUMS
    Berkes, Istvan
    Horvath, Lajos
    Schauer, Johannes
    STOCHASTICS AND DYNAMICS, 2012, 12 (01)
  • [5] RELATIVE STABILITY OF TRIMMED SUMS
    MALLER, RA
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1984, 66 (01): : 61 - 80
  • [6] Trimmed comparison of distributions
    Alvarez-Esteban, Pedro Cesar
    Del Barrio, Eustasio
    Cuesta-Albertos, Juan Antonio
    Matran, Carlos
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2008, 103 (482) : 697 - 704
  • [7] TRIMMED FOR PRECISION.
    Spitz, Leonard
    Electronic Packaging and Production, 1985, 25 (10): : 48 - 56
  • [8] THE CENTRAL LIMIT PROBLEM FOR TRIMMED SUMS
    GRIFFIN, PS
    PRUITT, WE
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1987, 102 : 329 - 349
  • [9] Limit laws of modulus trimmed sums
    Griffin, PS
    Qazi, FS
    ANNALS OF PROBABILITY, 2002, 30 (03): : 1466 - 1485
  • [10] On a law of the iterated logarithm for trimmed sums
    Egorov, V.A.
    Pozdnyakov, V.I.
    Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya, 1994, (04): : 34 - 38